【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點(diǎn)M、N分別在AB、AD邊上,若AM:MB=AN:ND=1:2,則tan∠MCN=(
A.
B.
C.
D. ﹣2

【答案】A
【解析】解:∵AB=AD=6,AM:MB=AN:ND=1:2, ∴AM=AN=2,BM=DN=4,
連接MN,連接AC,

∵AB⊥BC,AD⊥CD,∠BAD=60°
在Rt△ABC與Rt△ADC中,
,
∴Rt△ABC≌Rt△ADC(HL)
∴∠BAC=∠DAC= ∠BAD=30°,MC=NC,
∴BC= AC,
∴AC2=BC2+AB2 , 即(2BC)2=BC2+AB2 ,
3BC2=AB2 ,
∴BC=2 ,
在Rt△BMC中,CM= = =2
∵AN=AM,∠MAN=60°,
∴△MAN是等邊三角形,
∴MN=AM=AN=2,
過M點(diǎn)作ME⊥CN于E,設(shè)NE=x,則CE=2 ﹣x,
∴MN2﹣NE2=MC2﹣EC2 , 即4﹣x2=(2 2﹣(2 ﹣x)2
解得:x= ,
∴EC=2 = ,
∴ME= = ,
∴tan∠MCN= =
故選:A.
連接AC,通過三角形全等,求得∠BAC=30°,從而求得BC的長,然后根據(jù)勾股定理求得CM的長,連接MN,過M點(diǎn)作ME⊥CN于E,則△MNA是等邊三角形求得MN=2,設(shè)NE=x,表示出CE,根據(jù)勾股定理即可求得ME,然后求得tan∠MCN.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,點(diǎn)G、E、F分別在AB、CD上,FG平分∠CFE,若∠1=40°,求∠FGE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,已知拋物線y=x2+bx+c經(jīng)過(﹣1,m2+2m+1)、(0,m2+2m+2)兩點(diǎn),其中m為常數(shù).
(1)求b的值,并用含m的代數(shù)式表示c;
(2)若拋物線y=x2+bx+c與x軸有公共點(diǎn),求m的值;
(3)設(shè)(a,y1)、(a+2,y2)是拋物線y=x2+bx+c上的兩點(diǎn),請(qǐng)比較y2﹣y1與0的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛貨車從甲地勻速駛往乙地,到達(dá)后用了半小時(shí)卸貨,隨即勻速返回,已知貨車返回的速度是它從甲地駛往乙地的速度的1.5倍.貨車離甲地的距離y(千米)關(guān)于時(shí)間x(小時(shí))的函數(shù)圖象如圖所示.則a=(小時(shí)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明從點(diǎn)A處出發(fā),沿著坡角為α的斜坡向上走了0.65千米到達(dá)點(diǎn)B,sinα= ,然后又沿著坡度為i=1:4的斜坡向上走了1千米達(dá)到點(diǎn)C.問小明從A點(diǎn)到點(diǎn)C上升的高度CD是多少千米(結(jié)果保留根號(hào))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八(2)班組織了一次經(jīng)典朗讀比賽,甲、乙兩隊(duì)各10人的比賽成績?nèi)缦卤恚?0分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9


(1)甲隊(duì)成績的中位數(shù)是分,乙隊(duì)成績的眾數(shù)是分;
(2)計(jì)算乙隊(duì)的平均成績和方差;
(3)已知甲隊(duì)成績的方差是1.4分2 , 則成績較為整齊的是隊(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y= (x<0)的圖象經(jīng)過點(diǎn)A(﹣1,1),過點(diǎn)A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點(diǎn)P(0,t),過點(diǎn)P作直線OA的垂線l,以直線l為對(duì)稱軸,點(diǎn)B經(jīng)軸對(duì)稱變換得到的點(diǎn)B′在此反比例函數(shù)的圖象上,則t的值是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將透明三角形紙片PAB的直角頂點(diǎn)P落在第四象限,頂點(diǎn)A、B分別落在反比例函數(shù)y= 圖象的兩支上,且PB⊥x于點(diǎn)C,PA⊥y于點(diǎn)D,AB分別與x軸,y軸相交于點(diǎn)E、F.已知B(1,3).

(1)k=;
(2)試說明AE=BF;
(3)當(dāng)四邊形ABCD的面積為 時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△AOB為等腰三角形,頂點(diǎn)A的坐標(biāo)(2, ),底邊OB在x軸上.將△AOB繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)一定角度后得△A′O′B,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′在x軸上,則點(diǎn)O′的坐標(biāo)為( )

A.(
B.( ,
C.(
D.( ,4

查看答案和解析>>

同步練習(xí)冊(cè)答案