如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D為BC的中點(diǎn),若動(dòng)點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿著A→B→A的方向運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒(0≤t<6),連接DE,當(dāng)△BDE是直角三角形時(shí),t的值為( )

A.2
B.2.5或3.5
C.3.5或4.5
D.2或3.5或4.5
【答案】分析:由Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,可求得AB的長(zhǎng),由D為BC的中點(diǎn),可求得BD的長(zhǎng),然后分別從若∠DBE=90°與若∠EDB=90°時(shí),去分析求解即可求得答案.
解答:解:∵Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,
∴AB=2BC=4(cm),
∵BC=2cm,D為BC的中點(diǎn),動(dòng)點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),
∴BD=BC=1(cm),BE=AB-AE=4-t(cm),
若∠BED=90°,
當(dāng)A→B時(shí),∵∠ABC=60°,
∴∠BDE=30°,
∴BE=BD=(cm),
∴t=3.5,
當(dāng)B→A時(shí),t=4+0.5=4.5.
若∠BED=90°時(shí),
當(dāng)A→B時(shí),∵∠ABC=60°,
∴∠BDE=30°,
∴BE=2BD=2(cm),
∴t=4-2=2,
當(dāng)B→A時(shí),t=4+2=6(舍去).
綜上可得:t的值為2或3.5或4.5.
故選D.
點(diǎn)評(píng):此題考查了含30°角的直角三角形的性質(zhì).此題屬于動(dòng)點(diǎn)問(wèn)題,難度適中,注意掌握分類討論思想與數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圓規(guī)和直尺作圖,用兩種方法把它分成兩個(gè)三角形,且要求其中一個(gè)三角形是等腰三角形.(保留作圖痕跡,不要求寫(xiě)作法和證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC點(diǎn)邊上一點(diǎn),DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的長(zhǎng)(2)求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,則CD=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC中,∠C=90°,△ABC的內(nèi)切圓⊙0與BC、CA、AB分別切于點(diǎn)D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半徑;
(2)若⊙0的半徑為r,△ABC的周長(zhǎng)為ι,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案