已知:有一紙片如圖,其中△ABC中,AD⊥BC,垂足為點D,BD=CD,點M在BA的延長線上.實施操作:將紙片沿一直線AN折疊,使AM和AC重合,并且過點C作CE⊥AN,垂足為點E.
(1)請用尺規(guī),在圖中畫出折線AN;(保留作圖痕跡)
(2)將圖形補全,求證:四邊形ADCE為矩形;
(3)當△ABC滿足什么條件時,四邊形ADCE是一個正方形?直接寫出結(jié)論.

【答案】分析:(1)根據(jù)角平分線的作法得出答案即可;
(2)根據(jù)矩形的有三個角是直角的四邊形是矩形,已知CE⊥AN,AD⊥BC,所以求證∠DAE=90°,我樣可以證明四邊形ADCE為矩形.
(3)根據(jù)正方形的判定,我們可以假設(shè)當AD=BC,由已知可得,DC=BC,由(2)的結(jié)論可知四邊形ADCE為矩形,所以證得,四邊形ADCE為正方形.
解答:(1)解:如圖所示:
作出∠CAM的平分線即為折線AN;

(2)證明:如圖所示:
BD=CD,AD⊥BC,
∴AB=AC,∠BAD=∠DAC.
∵由作圖知AN是△ABC外角∠CAM的平分線,
∴∠MAN=∠CAN.
∴∠DAN=∠DAC+∠CAN=180°=90°.
∵AD⊥BC,CE⊥AN,
∴∠ADC=∠CEA=90°,
∴四邊形ADCE為矩形.

(3)當△ABC滿足∠BAC=90°時,四邊形ADCE是一個正方形.
理由:
證明:∵AB=AC,
∴∠ACB=∠B=45°,
∵AD⊥BC,
∴∠CAD=∠ACD=45°,
∴DC=AD,
∵四邊形ADCE為矩形,
∴矩形ADCE是正方形.
說明:答案只要正確均應(yīng)給分.(如DC=AD,BD=AD等)
點評:此題主要考查了對矩形的判定,正方形的判定,等腰三角形的性質(zhì),及角平分線的性質(zhì)等知識點的綜合運用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖所示,已知OABC是一張放在平面直角坐標系中的矩形紙片,O為坐標原點,點A在x軸上,點C在y軸上,且OA=15,OC=9,在邊AB上選取一點D,將△AOD沿OD翻折,使點A落在BC邊上,記為點E.
(1)求DE所在直線的解析式;
(2)設(shè)點P在x軸上,以點O、E、P為頂點的三角形是等腰三角形,問這樣的點P有幾個,并求出所有滿足條件的點P的坐標;
(3)在x軸、y軸上是否分別存在點M、N,使四邊形MNED的周長最小?如果存在,求出周長的最小值;如果不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:一張直角三角形紙片如圖1放置在平面直角坐標系中,一條直角邊OA落在x軸正半軸上,另一條直角邊OB落在y軸正半軸上,且OA=8,OB=6.現(xiàn)再找一個與Rt△ABO有一條公共邊且不重疊的三角形,使它們拼在一起后能構(gòu)成一個大的等腰三角形.例如:如圖2,△CBO與△ABO拼成等腰△ABC,則點C坐標為(-2,0).請直接寫出除圖2情況外,其他所有的所拼成的等腰三角形中除A、B、O三點外另一頂點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•路南區(qū)一模)已知:有一紙片如圖,其中△ABC中,AD⊥BC,垂足為點D,BD=CD,點M在BA的延長線上.實施操作:將紙片沿一直線AN折疊,使AM和AC重合,并且過點C作CE⊥AN,垂足為點E.
(1)請用尺規(guī),在圖中畫出折線AN;(保留作圖痕跡)
(2)將圖形補全,求證:四邊形ADCE為矩形;
(3)當△ABC滿足什么條件時,四邊形ADCE是一個正方形?直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:有一紙片如圖,其中△ABC中,AD⊥BC,垂足為點D,BD=CD,點M在BA的延長線上.實施操作:將紙片沿一直線AN折疊,使AM和AC重合,并且過點C作CE⊥AN,垂足為點E.
(1)請用尺規(guī),在圖中畫出折線AN;(保留作圖痕跡)
(2)將圖形補全,求證:四邊形ADCE為矩形;
(3)當△ABC滿足什么條件時,四邊形ADCE是一個正方形?直接寫出結(jié)論.

查看答案和解析>>

同步練習冊答案