如圖,⊙O的弦AB、半徑OC延長交于點D,BD=OA,若∠AOC=105°,求∠D的度數(shù).

【答案】分析:利用BD=AO=OB,結(jié)合等腰三角形的性質(zhì)及內(nèi)角和定理求解.
解答:解:連接OB,
∵BD=OA,OB=OA,
∴BD=AO=OB,
∴△OBD,△OAB都是等腰三角形,
設(shè)∠D的度數(shù)是x,則∠BAO=∠ABO=x+x=2x,
則在△AOB中,利用三角形的內(nèi)角得是180度,可得:
105-x+2x+2x=180,
解得x=25.
點評:本題主要是利用等腰三角形和三角形的內(nèi)角得定理理清角與角的關(guān)系,然后列方程求解即可.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

13、如圖,⊙O的弦AB和CD相交于K,過弦AB、CD的兩端的切線分別相交于P、Q,求證:OK⊥PQ.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

64、如圖,⊙O的弦AB、半徑OC延長交于點D,BD=OA,若∠AOC=105°,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O的弦AB=10,OC⊥AB,且OD=12,則⊙O的半徑等于(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O的弦AB垂直平分半徑OC,若AB=
6
,則⊙O的半徑為
2
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O的弦AB垂直于直徑MN,C為垂足,若OA=5cm,CN=2cm,則AB=
8cm
8cm

查看答案和解析>>

同步練習冊答案