( 10分)如圖,AB是⊙O的直徑,CD是⊙O的切線,切點為C.延長ABCD于點E.連接AC,作∠DAC=∠ACD,作AFED于點F,交⊙O于點G
(1)  求證:AD是⊙O的切線;
(2)  如果⊙O的半徑是6cm,EC=8cm,求GF的長.
解:(1)證明:連接OC
CD是⊙O的切線,∴∠OCD=90°.∴∠OCA+∠ACD=90°.∵OA=OC,∴∠OCA=∠OAC.∵∠DAC=∠ACD

 

 
∴∠0AC+∠CAD=90°.

 
∴∠OAD=90°.∴AD是⊙O的切線.

(2)連接BG;∵OC=6cm,EC=8cm,∴在Rt△CEO中,OE==10.
AE=OE+OA=1.∵AFED,∴∠AFE=∠OCE=90°,∠E=∠E
∴Rt△AEF∽Rt△OEC.∴=.即:=.∴AF=9.6.
AB是⊙O的直徑,∴∠AGB=90°.∴∠AGB=∠AFE
∵∠BAG=∠EAF,∴Rt△ABG ∽Rt△AEF.∴=.即:=.∴AG=7.2.
GF=AF-AG="9.6-7.2=2.4(cm)" .
解析:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

3、某校為了了解學(xué)生的身體素質(zhì)情況,對初三(2)班的50名學(xué)生進行了立定跳遠、鉛球、100米三個項目的測試,每個項目滿分為10分.如圖,是將該學(xué)生所得的三項成績(成績均為整數(shù))之和進行整理后,分成5組畫出的頻率分布直方圖,已知從左至右前4個小組的頻率分別為0.02,0.1,0.12,0.46.
下列說法:
(1)學(xué)生的成績≥27分的共有15人;
(2)學(xué)生成績的眾數(shù)在第四小組(22.5~26.5)內(nèi);
(3)學(xué)生成績的中位數(shù)在第四小組(22.5~26.5)范圍內(nèi).
其中正確的說法有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(A類8分)在平行四邊形ABCD中,∠ABC的平分線交CD于點E,∠ADC的平分線交AB于點F.試判斷AF與CE是否相等,并說明理由.
(B類9分)如圖,四邊形ABCD是矩形,E是AB上一點,且DE=CD,CF⊥DE,垂足為F.試說明AD與CF是否相等,并說明理由.
(C類10分)如圖,在菱形ABCD中,∠DAB=60°,CE⊥AC且與AB的延長線交于點E.試說明四邊形AECD是等腰梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(10分)如圖,CD⊥AB于點D,BE⊥AC于點E,BE,CD交于點O,且AO平分∠BAC。

(1)求證:△ADO≌△AEO

(2)猜想OB與OC的數(shù)量關(guān)系,并說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題10分)如圖,在Rt△ABC中,∠C=90°,點O在AB上,以O(shè)為圓心,OA長為半徑的圓與AC、AB分別交于點D、E,且∠CBD=∠A.
試判斷直線BD與⊙O的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年山東省濟南市學(xué)業(yè)水平模擬考試數(shù)學(xué) 題型:解答題

(本小題滿分10分)

如圖(1)所示為一上面無蓋的正方體紙盒,現(xiàn)將其剪開展成平面圖,如圖(2)所示.

已知展開圖中每個正方形的邊長為1.

(1)求在該展開圖中可畫出最長線段的長度?這樣的線段可畫幾條?

(2)試比較立體圖中與平面展開圖中的大小關(guān)系?

 

查看答案和解析>>

同步練習(xí)冊答案