(2012•青田縣模擬)為了探索代數(shù)式
x2+1
+
(8-x)2+25
的最小值,小明巧妙的運用了“數(shù)形結合”思想.具體方法是這樣的:如圖,C為線段BD上一動點,分別過點B、D作AB⊥BD,ED⊥BD,連接AC、EC.已知AB=1,DE=5,BD=8,設BC=x.則AC=
x2+1
,CE=
(8-x)2+25
,則問題即轉化成求AC+CE的最小值.
(1)我們知道當A、C、E在同一直線上時,AC+CE的值最小,于是可求得
x2+1
+
(8-x)2+25
的最小值等于
10
10
,此時x=
4
3
4
3

(2)請你根據(jù)上述的方法和結論,試構圖求出代數(shù)式
x2+4
+
(12-x)2+9
的最小值.
分析:(1)根據(jù)兩點之間線段最短可知AC+CE的最小值就是線段AE的長度.過點E作EF∥BD,交AB的延長線于F點.在Rt△AEF中運用勾股定理計算求解.
(2)由(1)的結果可作BD=12,過點A作AF∥BD,交DE的延長線于F點,使AB=2,ED=3,連接AE交BD于點C,然后構造矩形AFDB,Rt△AFE,利用矩形的直角三角形的性質可求得AE的值就是代數(shù)式
x2+4
+
(12-x)2+9
的最小值.
解答:解:(1)過點E作EF∥BD,交AB的延長線于F點,
根據(jù)題意,四邊形BDEF為矩形.
AF=AB+BF=5+1=6,EF=BD=8.
∴AE=
62+82
=10.
即AC+CE的最小值是10.
x2+1
+
(8-x)2+25
=10,
∵EF∥BD,
AB
AF
=
BC
EF
,
1
6
=
x
8
,
解得:x=
4
3


(2)過點A作AF∥BD,交DE的延長線于F點,
根據(jù)題意,四邊形ABDF為矩形.
EF=AB+DE=2+3=5,AF=DB=12.
∴AE=
52+122
=13.
即AC+CE的最小值是13.
點評:本題主要考查了最短路線問題以及勾股定理應用,利用了數(shù)形結合的思想,通過構造直角三角形,利用勾股定理求解是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•青田縣模擬)下列計算中,不正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•青田縣模擬)在數(shù)-1,1,2中任取兩個數(shù)作為點坐標,那么該點剛好在一次函數(shù)y=x-2圖象上的概率是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•青田縣模擬)(1)計算:20120+
12
-4×sin60°

(2)解不等式:2(x-1)+3≤3(x+1).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•青田縣模擬)我市某服裝廠主要做外貿服裝,由于技術改良,2011年全年每月的產量y(單位:萬件)與月份x之間可以用一次函數(shù)y=x+10表示,但由于“歐債危機”的影響,銷售受困,為了不使貨積壓,老板只能是降低利潤銷售,原來每件可賺10元,從1月開始每月每件降低0.5元.試求:
(1)幾月份的單月利潤是108萬元?
(2)單月最大利潤是多少?是哪個月份?

查看答案和解析>>

同步練習冊答案