【題目】某建筑公司甲、乙兩個(gè)工程隊(duì)通過公開招標(biāo)獲得某改造工程項(xiàng)目.已知甲隊(duì)單獨(dú)完成這項(xiàng)工程的時(shí)間是乙隊(duì)單獨(dú)完成這項(xiàng)工程時(shí)間的倍,由于乙隊(duì)還有其他任務(wù),先由甲隊(duì)單獨(dú)做55天后,再由甲、乙兩隊(duì)合做20天,完成了該項(xiàng)改造工程任務(wù).
(Ⅰ)請(qǐng)根據(jù)題意求甲、乙兩隊(duì)單獨(dú)完成改造工程任務(wù)各需多少天;
(Ⅱ)這項(xiàng)改造工程共投資200萬元,如果按完成的工程量付款,那么甲、乙兩隊(duì)可獲工程款各多少萬元?
【答案】(1)甲隊(duì)單獨(dú)完成改造工程任務(wù)需100天,乙隊(duì)單獨(dú)完成改造工程任務(wù)需80天;(2)甲隊(duì)可獲工程款150萬,乙隊(duì)可獲工程款50萬.
【解析】
(1)把工程總量看作單位1,那么有甲單獨(dú)做的工程量+甲乙合作的工程量=1,若設(shè)乙隊(duì)單獨(dú)完成需要x天,則甲單獨(dú)完成需要1.25x天,根據(jù)等量關(guān)系式列分式方程并求解即可.
(2)先計(jì)算乙隊(duì)完成的工程量,根據(jù)所占比例即可得出乙隊(duì)可獲得的工程款,繼而得出甲獲得的工程款.
解:(Ⅰ)設(shè)甲、乙兩隊(duì)單獨(dú)完成改造工程任務(wù)各需1.25x天,x天
依題意得:
整理得:
解得: x=80.
經(jīng)檢驗(yàn):x=80是原方程的解.
∴1.25x=100(天)
答:甲隊(duì)單獨(dú)完成改造工程任務(wù)需100天,乙隊(duì)單獨(dú)完成改造工程任務(wù)需80天;
(Ⅱ)乙隊(duì)完成的工程量
乙隊(duì)可獲工程款:=50(萬).
甲隊(duì)可獲工程款:200-50=150(萬).
答:甲隊(duì)可獲工程款150萬,乙隊(duì)可獲工程款50萬.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年“五一”節(jié),小明外出爬山,他從山腳爬到山頂?shù)倪^程中,中途休息了一段時(shí)間.設(shè)他從山腳出發(fā)后所用的時(shí)間為t(分鐘),所走的路程為s(米),s與t之間的函數(shù)關(guān)系如圖所示,下列說法錯(cuò)誤的是( )
A.小明中途休息用了20分鐘
B.小明休息前爬山的平均速度為每分鐘70米
C.小明在上述過程中所走的路程為6600米
D.小明休息前爬山的平均速度大于休息后爬山的平均速度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,.、是邊、邊上的動(dòng)點(diǎn),從出發(fā)向運(yùn)動(dòng),同時(shí)以相同的速度從出發(fā)向運(yùn)動(dòng),運(yùn)動(dòng)到停止.為中點(diǎn).
試探究的形狀,并說明理由.
在運(yùn)動(dòng)過程中,四邊形可能成為正方形嗎?如能求正方形的邊長(zhǎng).
當(dāng)為多少時(shí),的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】深圳市某學(xué)校抽樣調(diào)查,A類學(xué)生騎共享單車,B類學(xué)生坐公交車、私家車等,C類學(xué)生步行,D類學(xué)生(其它),根據(jù)調(diào)查結(jié)果繪制了不完整的統(tǒng)計(jì)圖.
類型 | 頻數(shù) | 頻率 |
A | 30 | |
B | 18 | 0.15 |
C | 0.40 | |
D |
(1)學(xué)生共________人, ________, ________;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校共有2000人,騎共享單車的有________人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點(diǎn)A,點(diǎn)C,過點(diǎn)A作AB⊥x軸,垂足為點(diǎn)A,過點(diǎn)C作CB⊥y軸,垂足為點(diǎn)C,兩條垂線相交于點(diǎn)B.
(1)線段AB,BC,AC的長(zhǎng)分別為AB= ,BC= ,AC= ;
(2)折疊圖1中的△ABC,使點(diǎn)A與點(diǎn)C重合,再將折疊后的圖形展開,折痕DE交AB于點(diǎn)D,交AC于點(diǎn)E,連接CD,如圖2.
請(qǐng)從下列A、B兩題中任選一題作答,我選擇 題.
A:①求線段AD的長(zhǎng);
②在y軸上,是否存在點(diǎn)P,使得△APD為等腰三角形?若存在,請(qǐng)直接寫出符合條件的所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
B:①求線段DE的長(zhǎng);
②在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)B外),使得以點(diǎn)A,P,C為頂點(diǎn)的三角形與△ABC全等?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出△關(guān)于軸對(duì)稱的△,并寫出△各頂點(diǎn)的坐標(biāo);
(2)將△向右平移6個(gè)單位,作出平移后的△,并寫出△各頂點(diǎn)的坐標(biāo);
(3)觀察△和△,它們是否關(guān)于某直線對(duì)稱?若是,請(qǐng)用粗線條畫出對(duì)稱軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,∠ACB=90°,AC=BC,點(diǎn)D在斜邊AB上,且AD=AC,過點(diǎn)B作BE⊥CD交CD的延長(zhǎng)線于點(diǎn)E.
(1)畫出符合題意的圖形;
(2)求∠BCD的度數(shù);
(3)求證:CD=2BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),直線y=kx+b經(jīng)過點(diǎn)A(﹣2,﹣1),交y軸負(fù)半軸于點(diǎn)B,且∠ABO=30°,過點(diǎn)A作直線AC⊥x軸于點(diǎn)C,點(diǎn)P在直線AC上.
(1)k= ;b= ;
(2)設(shè)△ABP的面積為S,點(diǎn)P的縱坐標(biāo)為m.
①當(dāng)m>0時(shí),求S與m之間的函數(shù)關(guān)系式;
②當(dāng)S=2時(shí),求m的值;
③當(dāng)m>0且S=4時(shí),以BP為邊作等邊△BPQ,請(qǐng)直接寫出符合條件的所有點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣+bx+4與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,若已知B點(diǎn)的坐標(biāo)為B(8,0).
(1)求拋物線的解析式及其對(duì)稱軸方程.
(2)連接AC、BC,試判斷△AOC與△COB是否相似?并說明理由.
(3)在拋物線上BC之間是否存在一點(diǎn)D,使得△DBC的面積最大?若存在請(qǐng)求出點(diǎn)D的坐標(biāo)和△DBC的面積;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com