觀察方程(2x-1)(2x+1)=0的解是


  1. A.
    數(shù)學(xué)公式
  2. B.
    -數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式或-數(shù)學(xué)公式
  4. D.
    無解
C
分析:方程(2x-1)(2x+1)=0,觀察可知只要2x-1=0或2x+1=0即可,解兩個一元一次方程再選擇正確的答案.
解答:由(2x-1)(2x+1)=0,得2x-1=0或2x+1=0.
解得x=或x=-
故選C.
點評:此類選擇題,也可把四個選項分別代入方程檢驗,注意方程的解不只一個,要靈活掌握解題的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、(1)請在坐標(biāo)系中畫出二次函數(shù)y=x2-2x的大致圖象;
(2)根據(jù)方程的根與函數(shù)圖象的關(guān)系,將方程x2-2x=1的根在圖上近似的表示出來(描點);
(3)觀察圖象,直接寫出方程x2-2x=1的根.(精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察方程(2x-1)(2x+1)=0的解是(  )
A、
1
2
B、-
1
2
C、
1
2
或-
1
2
D、無解

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程:x+
1
x
=c+
1
c
的解是x1=c,x2=
1
c
;x+
2
x
=c+
2
c
的解是x1=c,x2=
2
c
;x+
3
x
=c+
3
c
的解是x1=c,x2=
3
c
;…
請觀察上述方程與解的特征,歸納,猜想:關(guān)于x的方程x+
m
x
=c+
m
c
(m≠0)
的解是
 
;關(guān)于x的方程x+
2
x-1
=a+
2
a-1
的解是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)二模)觀察方程①:x+
2
x
=3,方程②:x+
6
x
=5,方程③:x+
12
x
=7.
(1)方程①的根為:
x1=1,x2=2
x1=1,x2=2
;方程②的根為:
x1=2,x2=3
x1=2,x2=3
;方程③的根為:
x1=3,x2=4
x1=3,x2=4
;
(2)按規(guī)律寫出第四個方程:
x+
20
x
=9
x+
20
x
=9
;此分式方程的根為:
x1=4,x2=5
x1=4,x2=5

(3)寫出第n個方程(系數(shù)用n表示):
x+
n(n+1)
x
=2n+1
x+
n(n+1)
x
=2n+1
;此方程解是:
x1=n,x2=n+1
x1=n,x2=n+1

查看答案和解析>>

同步練習(xí)冊答案