等邊△ABC中,邊長AB=4,則△ABC的面積為(  )
A.14B.8C.8
3
D.4
3
AD為BC邊上的高,故D為BC中點,
即BD=DC=2,∵AB=4,
∴AD=
AB2-BD2
=2
3
,
則△ABC的面積=
1
2
BC•AD=
1
2
×4×2
3
=4
3

故選D.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知:∠MON=30°,點A1、A2、A3在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,木工師傅從邊長為90cm的正三角形木板上鋸出一正六邊形木塊,那么正六邊形木板的邊長為(  )
A.34cmB.32cmC.30cmD.28cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

等邊△ABC的邊長為a,頂點A在原點,一條高線恰好落在y軸的負半軸上,則第三象限的頂點B的坐標是( 。
A.(
a
2
,-
3
2
a
B.(-
3
2
a
-
1
2
a
C.(-
a
2
,-
3
2
a
D.(-
3
2
a
,
1
2
a

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在直角坐標系中,△AOB是等邊三角形,若B點的坐標是(2,0),則A點的坐標是( 。
A.(2,1)B.(1,2)C.(
3
,1)
D.(1,
3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

等邊△OAB在平面直角坐標系中(圖1),已知點A(2,0),將△OAB繞點O順時針方向旋轉a°(0<a<360)得△OA1B1
(1)直接寫出點B的坐標;
(2)當a=30°時,求△OAB與△OA1B1重合部分(圖2中的陰影部分)的面積;
(3)當A1,B1的縱坐標相同時,求a的值;
(4)當60<a<180時,設直線A1B1與BA相交于點P,PA、PB1的長是方程x2-mx+m=0的兩個實數(shù)根,求此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,若△ABC和△ADE為等邊三角形,M,N分別EB,CD的中點,易證:CD=BE,△AMN是等邊三角形.

(1)當把△ADE繞A點旋轉到圖2的位置時,CD=BE是否仍然成立?若成立,請證明,若不成立,請說明理由;
(2)當△ADE繞A點旋轉到圖3的位置時,△AMN是否還是等邊三角形?若是,請給出證明,并求出當AB=2AD時,△ADE與△ABC及△AMN的面積之比;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,要把邊長為6的正三角形紙板剪去三個三角形,得到正六邊形,它的邊長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知A(-4,0)、B(-2,3),則S△AOB=______.

查看答案和解析>>

同步練習冊答案