A. | $\sqrt{5}$:2 | B. | 4:5 | C. | 3:5 | D. | 10:25 |
分析 先根據(jù)有兩角對(duì)應(yīng)相等的兩三角形相似證明△ADC∽△ACB,利用相似三角形面積比等于相似比的平方得出S△ADC:S△ACB=(AC:AB)2=(6:9)2=4:9,進(jìn)而求出S△ADC:S△CDB=4:5.
解答 解:如圖,CD是直角△ABC斜邊AB上的高,AC=6,AB=9.
∵∠A=∠A,∠ADC=∠ACB=90°,
∴△ADC∽△ACB,
∴S△ADC:S△ACB=(AC:AB)2=(6:9)2=4:9,
∴S△ADC:S△CDB=4:5.
故選B.
點(diǎn)評(píng) 本題考查了相似三角形的判定與性質(zhì),掌握三角形相似的判定與性質(zhì)定理是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-$\frac{1}{2}$,$\frac{13}{5}$) | B. | (-$\frac{2}{5}$,$\frac{13}{5}$) | C. | (-$\frac{4}{5}$,$\frac{12}{5}$) | D. | (-$\frac{3}{5}$,$\frac{12}{5}$) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com