【題目】解下列方程:
(1)x2+4x-5=0;(2)x(x-4)=2-8x;(3)x-3=4(x-3)2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC的長為4,面積是12,腰AB的垂直平分線EF分別交AB、AC于點E、F,若點D為底邊BC的中點,點M為線段EF上一動點,則△BDM的周長的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=4,△ABC繞點C順時針旋轉(zhuǎn)得△CEF,當E落在AB邊上時,連接BF,取BF的中點D,連接ED,則ED的長是( )
A.2B.4C.6D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC與△A′B′C′是以點O為位似中心的位似圖形,它們的頂點都在正方形網(wǎng)格的格點上.
(1)畫出位似中心O;
(2)△ABC與△A′B′C′的相似比為__________,面積比為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AC與BD交于點E,點E是BD的中點,延長CD到點F,使DF=CD,連接AF,
(1)求證:AE=CE;
(2)求證:四邊形ABDF是平行四邊形;
(3)若AB=2,AF=4,∠F=30°,則四邊形ABCF的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A,B,C,D為矩形的四個頂點,AB=16 cm,AD=6 cm,動點P,Q分別從點A,C同時出發(fā),點P以3 cm/s的速度向點B移動,一直到點B為止,點Q以2 cm/s的速度向點D移動,當點P停止運動時,點Q也停止運動.問:
(1)P,Q兩點從開始出發(fā)多長時間時,四邊形PBCQ的面積是33 cm2?
(2)P,Q兩點從開始出發(fā)多長時間時,點P與點Q之間的距離是10 cm?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點,分別在直線和上,若,,可以證明.請完成下面證明過程中的各項“填空”.
證明:∵(理由:______.)
______(對頂角相等)
∴,∴(理由:______)
∴______(兩直線平行,同位角相等)
又∵,∴,
∴______(內(nèi)錯角相等,兩直線平行)
∴(理由:______)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題提出)在數(shù)學“共生課堂”上,某合作小組提出了這樣一個問題:如圖1,在等邊三角形ABC內(nèi)有一點P,且PA=1,PB=2,PC=.你能求出∠APB的度數(shù)嗎?
(問題解決)(1)李清同學分析題目后,發(fā)現(xiàn)以PA、PB、PC的長為邊的三角形是直角三角形,他找到了正確的思路:如圖2,將△BPC繞點B逆時針旋轉(zhuǎn)60°,得到△BP′A.連接PP′,易得△P′PB是等邊三角形,△P′PA是直角三角形,則得∠BPP′=_________,∠APB=_________.
(問題類比)(2)同組的祁響同學突然想起曾經(jīng)解決過的一個問題:如圖3,點P是正方形ABCD內(nèi)一點,PA=1,PB=2,PC=3.求∠APB的度數(shù).請你寫出解答過程.
(問題延伸)(3)夏老師留了一個思考題:如圖4,若點P是正方形ABCD外一點,PA=,PB=1,PC=.則∠APB的度數(shù).請你寫出解答過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示在平面直角坐標系中,方格紙中每個小方格都是邊長為1個單位長度的正方形,已知點,,.
(1)在所給的直角坐標系中畫出三角形;
(2)把三角形向左平移3個單位,再向上平移2個單位得到三角形,畫出三角形并寫出點的坐標;
(3)求三角形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com