【題目】已知,△ABC是邊長(zhǎng)3cm的等邊三角形.動(dòng)點(diǎn)P以1cm/s的速度從點(diǎn)A出發(fā),沿線段AB向點(diǎn)B運(yùn)動(dòng).
(1)如圖1,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),那么t= (s)時(shí),△PBC是直角三角形;
(2)如圖2,若另一動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線段BC向點(diǎn)C運(yùn)動(dòng),如果動(dòng)點(diǎn)P、Q都以1cm/s的速度同時(shí)出發(fā).設(shè)運(yùn)動(dòng)時(shí)間為t(s),那么t為何值時(shí),△PBQ是直角三角形?
(3)如圖3,若另一動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿射線BC方向運(yùn)動(dòng).連接PQ交AC于D.如果動(dòng)點(diǎn)P、Q都以1cm/s的速度同時(shí)出發(fā).設(shè)運(yùn)動(dòng)時(shí)間為t(s),那么t為何值時(shí),△DCQ是等腰三角形?
(4)如圖4,若另一動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿射線BC方向運(yùn)動(dòng).連接PQ交AC于D,連接PC.如果動(dòng)點(diǎn)P、Q都以1cm/s的速度同時(shí)出發(fā).請(qǐng)你猜想:在點(diǎn)P、Q的運(yùn)動(dòng)過(guò)程中,△PCD和△QCD的面積有什么關(guān)系?并說(shuō)明理由.
【答案】(1);(2)t=1或2(s);(3)t=1(s);(4)面積相等,理由見(jiàn)解析
【解析】
(1)當(dāng)△PBC是直角三角形時(shí),∠B=60°,所以BP=1.5cm,即可算出t的值;
(2)因?yàn)椤?/span>B=60°,可選取∠BPQ=90°或∠BQP=90°,然后根據(jù)勾股定理計(jì)算出BP長(zhǎng),即可算出t的大;
(3)因?yàn)椤?/span>DCQ=120°,當(dāng)△DCQ是等腰三角形時(shí),CD=CQ,然后可證明△APD是直角三角形,即可根據(jù)題意求出t的值;
(4)面積相等.可通過(guò)同底等高驗(yàn)證.
解:(1)當(dāng)△PBC是直角三角形時(shí),∠B=60°,
∠BPC=90°,所以BP=1.5cm,
所以t=.
(2)當(dāng)∠BPQ=90°時(shí),BP=0.5BQ,
3﹣t=0.5t,所以t=2;
當(dāng)∠BQP=90°時(shí),BP=2BQ,
3﹣t=2t,所以t=1;
所以t=1或2(s);
(3)因?yàn)椤?/span>DCQ=120°,當(dāng)△DCQ是等腰三角形時(shí),CD=CQ,
所以∠PDA=∠CDQ=∠CQD=30°,
又因?yàn)椤?/span>A=60°,
所以AD=2AP,2t+t=3,
解得t=1(s);
(4)相等,如圖所示:
作PE⊥AD于E,QG⊥AD延長(zhǎng)線于G,則PE∥QG,則易知∠G=∠AEP,∠A=∠ACB=∠QCG=60°,
在△EAP和△GCQ中,
因?yàn)?/span>,
所以△EAP≌△GCQ(AAS),
所以PE=QG,所以,△PCD和△QCD同底等高,所以面積相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象分別與x軸,y軸的正半軸分別交于點(diǎn)A,B,AB=2,∠OAB=45°
(1)求一次函數(shù)的解析式;
(2)如果在第二象限內(nèi)有一點(diǎn)C(a,);試用含有a的代數(shù)式表示四邊形ABCO的面積,并求出當(dāng)△ABC的面積與△ABO的面積相等時(shí)a的值;
(3)在x軸上,是否存在點(diǎn)P,使△PAB為等腰三角形?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著信息技術(shù)的高速發(fā)展,計(jì)算機(jī)技術(shù)已是每位學(xué)生應(yīng)該掌握的基本技能.為了提高學(xué)生對(duì)計(jì)算機(jī)的興趣,老師把甲、乙兩組各有10名學(xué)生,進(jìn)行電腦漢字輸入速度比賽,各組參賽學(xué)生每分鐘輸入漢字個(gè)數(shù)統(tǒng)計(jì)如下表:
輸入漢字(個(gè)) | 132 | 133 | 134 | 135 | 136 | 137 |
甲組人數(shù)(人) | 1 | 0 | 1 | 5 | 2 | 1 |
乙組人數(shù)(人) | 0 | 1 | 4 | 1 | 2 | 2 |
(1)請(qǐng)你填寫下表中甲班同學(xué)的相關(guān)數(shù)據(jù).
組 | 眾數(shù) | 中位數(shù) | 平均數(shù)() | 方差() |
甲組 | ||||
乙組 | 134 | 134.5 | 135 | 1.8 |
(2)若每分鐘輸入漢字個(gè)數(shù)136及以上為優(yōu)秀,則從優(yōu)秀人數(shù)的角度評(píng)價(jià)甲、乙兩組哪個(gè)成績(jī)更好一些?
(3)請(qǐng)你根據(jù)所學(xué)的統(tǒng)計(jì)知識(shí),從不同角度評(píng)價(jià)甲、乙兩組學(xué)生的比賽成績(jī)(至少?gòu)膬蓚(gè)角度進(jìn)行評(píng)價(jià)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,∠C=90°,DC=5,以CD為半徑的⊙C與以AB為半徑的⊙B相交于點(diǎn)E、F,且點(diǎn)E在BD上,聯(lián)結(jié)EF交BC于點(diǎn)G.
(1)設(shè)BC與⊙C相交于點(diǎn)M,當(dāng)BM=AD時(shí),求⊙B的半徑;
(2)設(shè)BC=x,EF=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;
(3)當(dāng)BC=10時(shí),點(diǎn)P為平面內(nèi)一點(diǎn),若⊙P與⊙C相交于點(diǎn)D、E,且以A、E、P、D為頂點(diǎn)的四邊形是梯形,請(qǐng)直接寫出⊙P的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)計(jì)算:,
(2)解下列方程組:
i,
ii,
(3)求不等式的解集,并把解集在數(shù)軸上表示出來(lái)..
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD內(nèi)部有若干個(gè)點(diǎn),用這些點(diǎn)以及正方形ABCD的頂點(diǎn)A、B、C、D把原正方形分割成一些三角形(互相不重疊):
(1)填寫下表:
正方形ABCD內(nèi)點(diǎn)的個(gè)數(shù) | 1 | 2 | 3 | 4 | … | n |
分割成的三角形的個(gè)數(shù) | 4 | 6 | … |
(2)原正方形能否被分割成2008個(gè)三角形?若能,求此時(shí)正方形ABCD內(nèi)部有多少個(gè)點(diǎn)?若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2+2kx+k2+k+3=0的兩根分別是x1、x2,則(x1﹣1)2+(x2﹣1)2的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(11·湖州)(本小題10分)
如圖,已知E、F分別是□ABCD的邊BC、AD上的點(diǎn),且BE=DF。
⑴求證:四邊形AECF是平行四邊形;
⑵若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和爸爸周末到濕地公園進(jìn)行鍛煉,兩人同時(shí)從家出發(fā),勻速騎共享單車到達(dá)公園入口,然后一同勻速步行到達(dá)驛站,到達(dá)驛站后小明的爸爸立即又騎共享單車按照來(lái)時(shí)騎行速度原路返回,在公園入口處改為步行,并按來(lái)時(shí)步行速度原路回家,小明到達(dá)驛站后逗留了10分鐘之后騎車回家,爸爸在鍛煉過(guò)程中離出發(fā)地的路程與出發(fā)的時(shí)間的函數(shù)關(guān)系如圖.
(1)圖中m=_____,n=_____;(直接寫出結(jié)果)
(2)小明若要在爸爸到家之前趕上,問(wèn)小明回家騎行速度至少是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com