【題目】某超市為慶祝開業(yè)舉辦大酬賓抽獎(jiǎng)活動(dòng),凡在開業(yè)當(dāng)天進(jìn)店購物的顧客,都能獲得一次抽獎(jiǎng)的機(jī)會(huì),抽獎(jiǎng)規(guī)則如下:在一個(gè)不透明的盒子里裝有分別標(biāo)有數(shù)字1、2、3的3個(gè)小球,它們的形狀、大小、質(zhì)地完全相同,顧客先從盒子里隨機(jī)取出一個(gè)小球,記下小球上標(biāo)有的數(shù)字,然后把小球放回盒子并攪拌均勻,再從盒子中隨機(jī)取出一個(gè)小球,記下小球上標(biāo)有的數(shù)字,并計(jì)算兩次記下的數(shù)字之和,若兩次所得的數(shù)字之和為6,則可獲得50元代金券一張;若所得的數(shù)字之和為5,則可獲得30元代金券一張;若所得的數(shù)字之和為4,則可獲得15元代金券一張;其它情況都不中獎(jiǎng).
(1)請(qǐng)用列表或樹狀圖的方法(選其中一種即可),把抽獎(jiǎng)一次可能出現(xiàn)的結(jié)果表示出來.
(2)假如你參加了該超市開業(yè)當(dāng)天的一次抽獎(jiǎng)活動(dòng),求能中獎(jiǎng)的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果點(diǎn)D、E分別在△ABC中的邊AB和AC上,那么不能判定DE∥BC的比例式是( )
A. AD:DB=AE:EC B. DE:BC=AD:AB
C. BD:AB=CE:AC D. AB:AC=AD:AE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AC、BD交于點(diǎn)O,AD=15,AO=12.動(dòng)點(diǎn)P以每秒2個(gè)單位的速度從點(diǎn)A出發(fā),沿AC向點(diǎn)C勻速運(yùn)動(dòng).同時(shí),動(dòng)點(diǎn)Q以每秒1個(gè)單位的速度從點(diǎn)D出發(fā),沿DB向點(diǎn)B勻速運(yùn)動(dòng).當(dāng)其中有一點(diǎn)列達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)求線段DO的長;
(2)設(shè)運(yùn)動(dòng)過程中△POQ兩直角邊的和為y,請(qǐng)求出y關(guān)于x的函數(shù)解析式;
(3)請(qǐng)直接寫出點(diǎn)P在線段OC上,點(diǎn)Q在線段DO上運(yùn)動(dòng)時(shí),△POQ面積的最大值,并寫出此時(shí)的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,P是CB邊上一動(dòng)點(diǎn),連接AP,作PQ⊥AP交AB于Q.已知AC=3cm,BC=6cm,設(shè)PC的長度為xcm,BQ的長度為ycm.
小青同學(xué)根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn)對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小青同學(xué)的探究過程,請(qǐng)補(bǔ)充完整:
(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測量,分別得到了y的幾組對(duì)應(yīng)值;
x/cm | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 6 |
y/cm | 0 | 1.56 | 2.24 | 2.51 | m | 2.45 | 2.24 | 1.96 | 1.63 | 1.26 | 0.86 | 0 |
(說明:補(bǔ)全表格時(shí),相關(guān)數(shù)據(jù)保留一位小數(shù))
m的值約為多少cm;
(2)在平面直角坐標(biāo)系中,描出以補(bǔ)全后的表格中各組數(shù)值所對(duì)應(yīng)的點(diǎn)(x,y),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:
①當(dāng)y>2時(shí),寫出對(duì)應(yīng)的x的取值范圍;
②若點(diǎn)P不與B,C兩點(diǎn)重合,是否存在點(diǎn)P,使得BQ=BP?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于平面內(nèi)任意一個(gè)角的“夾線圓”,給出如下定義:如果一個(gè)圓與這個(gè)角的兩邊都相切,則稱這個(gè)圓為這個(gè)角的“夾線圓”.例如:在平面直角坐標(biāo)系xOy中,以點(diǎn)(1,1)為圓心,1為半徑的圓是x軸與y軸所構(gòu)成的直角的“夾線圓”.
(1)下列各點(diǎn)中,可以作為x軸與y軸所構(gòu)成的直角的“夾線圓”的圓心的點(diǎn)是哪些;
A(2,2),B(3,1),C(-1,0),D(1,-1)
(2)若⊙P為y軸和直線 l:所構(gòu)成的銳角的“夾線圓”,且⊙P的半徑為1,求點(diǎn)P的坐標(biāo).
(3)若 ⊙Q為x軸和直線所構(gòu)成的銳角的“夾線圓”,且⊙Q的半徑,直接寫出點(diǎn)Q橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)A(0,4),B(0,﹣6),C為x軸正半軸上一點(diǎn),且滿足∠ACB=45°,則( 。
A. △ABC外接圓的圓心在OC上
B. ∠BAC=60°
C. △ABC外接圓的半徑等于5
D. OC=12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為Rt△ABC斜邊AB上的一點(diǎn),以OA為半徑的⊙O與BC切于點(diǎn)D,與AC交于點(diǎn)E,連接AD.
(1)求證:AD平分∠BAC;
(2)若∠BAC=60°,OA=2,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=x2+bx+c過點(diǎn)A(1,0),C(0,﹣3)
(1)求此二次函數(shù)的解析式;
(2)在拋物線上存在一點(diǎn)P使△ABP的面積為10,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com