23、一般地,n個(gè)相同的因數(shù)a相乘:a×a×a×a×┅┅×a記作an,如,此時(shí),3叫做以2為底8的對數(shù),記為log28(log28=3).一般地,若an=b,則n叫做以a為底的b的對數(shù),記為logab=n,如獲至寶34=81,則4叫做以3為底的81的對數(shù),記為log381=4.
問題:(1)計(jì)算下列各對數(shù)的值:log24=
2
;log216=
4
;log264=
6

(2 )觀察三數(shù)4,16,64之間滿足怎樣的關(guān)系式?log24,log216,log264之間又滿足怎樣的關(guān)系式?
(3)logaM+logaN=
logaMN
.(a>0且a≠1,M>0,N>0)
分析:(1)根據(jù)題中給出已知概念,可得出答案.
(2)4<16<64,log24<log216<log264,根據(jù)數(shù)值大小比較即可.
(3)通過分析,可知對數(shù)之和等于底不變,各項(xiàng)b值之積.
解答:解:(1)log24=2,log216=4,log264=6.

(2)4<16<64,log24<log216<log264;

(3)logaM+logaN=logaMN.
點(diǎn)評:考查了根據(jù)已知的新概念得出計(jì)算的規(guī)律,題目新穎,對應(yīng)變能力要求較高.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料:
一般地,n個(gè)相同的因數(shù)a相乘
a•a…a
n個(gè)
記為an,記為an.如2×2×2=23=8,此時(shí),3叫做以2為底8的對數(shù),記為log28(即log28=3).一般地,若an=b(a>0且a≠1,b>0),則n叫做以a為底b的對數(shù),記為logab(即logab=n).如34=81,則4叫做以3為底81的對數(shù),記為log381(即log381=4).
(1)計(jì)算以下各對數(shù)的值:
log24=
 
,log216=
 
,log264=
 

(2)觀察(1)中三數(shù)4、16、64之間滿足怎樣的關(guān)系式,log24、log216、log264之間又滿足怎樣的關(guān)系式;
(3)由(2)的結(jié)果,你能歸納出一個(gè)一般性的結(jié)論嗎?
logaM+logaN=
 
;(a>0且a≠1,M>0,N>0)
(4)根據(jù)冪的運(yùn)算法則:an•am=an+m以及對數(shù)的含義證明上述結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

10、閱讀下列材料:
一般地,n個(gè)相同的因數(shù)a相乘a•a•…•a,記為an.如2×2×2=23=8,此時(shí),3叫做以2為底8的對數(shù),記為log28(即log28=3).一般地,若an=b(a>0且a≠1,b>0),則n叫做以a為底b的對數(shù),記為lognb(即lognb).如34=81,則4叫做以3為底81的對數(shù),記為log381(即log381).
請你根據(jù)上述材料,計(jì)算:log24+log39+log416+log525=
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

仔細(xì)想一想:
先閱讀下列材料,再解答后面的問題:
材料:一般地,n個(gè)相同的因數(shù)a相乘:
a•a…a
n個(gè)
記為an.如23=8,此時(shí),3叫做以2為底8的對數(shù),記log28(即log28=3).一般地,若an=b(a>01且a≠1,b>0),則n叫做a為底b的對數(shù),記logab(即logab=n)如34=81,則4叫做以3為底81的對數(shù),記為log381(即log381=4.
問題:(1)計(jì)算以下各對數(shù)的值:
log24
 
,log216
 
,log264
 

(2)觀察(1)中三數(shù)4、16、64之間滿足怎樣的關(guān)系式?log24、log216之間又滿足怎樣的關(guān)系式?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

請閱讀材料:
①一般地,n個(gè)相同的因數(shù)a相乘:記為an,如23=8,此時(shí),指數(shù)3叫做以2為底8的對數(shù),記為log28log=3(即log28=3).  
②一般地,若an=b(a>0且a≠1,b>0),則指數(shù)n叫做以a為底b的對數(shù),記為logab(即logab=n),如34=81,則指數(shù)4叫做以3為底81的對數(shù),記為log381(即log381=4).
(1)計(jì)算下列各對數(shù)的值:
log24=
2
2
;   log216=
4
4
;    log264=
6
6

(2)觀察(1)題中的三數(shù)4、16、64之間存在的關(guān)系式是
4×16=64
4×16=64
,那么log24、log216、log264存在的關(guān)系式是
log24+log216=log264
log24+log216=log264

(3)由(2)題的結(jié)果,你能歸納出一個(gè)一般性的結(jié)論嗎?
logaM+logaN=
logaMN
logaMN
  (a>0且a≠1,M>0,N>0)
(4)請你運(yùn)用冪的運(yùn)算法則am•an=am+n以及上述中對數(shù)的定義證明(3)中你所歸納的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

請閱讀材料:
①一般地,n個(gè)相同的因數(shù)a相乘:
a•a…•a
n個(gè)
記為an,如2•2•2=23=8,此時(shí),3叫做以2為底8的對數(shù),記為log28 (即log28=log223=3).  
②一般地,若an=b(a>0且a≠1,b>0),則n叫做以a為底b的對數(shù),記為logab(即logab=logaan=n),如34=81,則4叫做以3為底81的對數(shù),記為log381(即log381=log334=4).
(1)計(jì)算下列各對數(shù)的值:
log24=
2
2
;log216=
4
4
;log264=
6
6

(2)觀察(1)題中的三數(shù),4,16,64之間存在怎樣的關(guān)系式
4×16=64
4×16=64

log24,log216,log264又存在怎樣的關(guān)系式.
log24+log216=log264
log24+log216=log264

(3)由(2)題猜想 logaM+logaN=
logaMN
logaMN
(a>0且a≠1,M>0,N>0),并結(jié)合冪的運(yùn)算法則:am•an=am+n加以證明.

查看答案和解析>>

同步練習(xí)冊答案