(如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊AC、BC上).

(1)若△CEF與△ABC相似.

①當(dāng)AC=BC=2時(shí),AD的長(zhǎng)為_________;

②當(dāng)AC=3,BC=4時(shí),AD的長(zhǎng)為_________;

(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似嗎?請(qǐng)說明理由.

 

【答案】

(1)①;②;(2)△CEF與△ABC相似.理由詳見解析.

【解析】

試題分析:(1)①如圖1,有△CEF與△ABC相似,可得∠CEF=∠A=45°,由題意知△CEF≌△DEF, 所以CE=DE,∠DEF=∠CEF=45°,所以∠DEC=90°,即∠AED=90°,又∠A=45°,所以△AED是等腰直角三角形,所以AE=DE,所以AE=CE=1,根據(jù)勾股定理可求得AD=.②分兩種情況:一、當(dāng)△CEF∽△CAB時(shí),如圖2,則有∠CEF=∠CAB,所以EF∥AB,根據(jù)題意,點(diǎn)C與點(diǎn)D關(guān)于直線EF對(duì)稱,所以CD⊥EF,所以CD⊥AB,由三角形的面積公式可求得CD=2.4,在△ACD中,由勾股定理可得AD=;二、當(dāng)△CFE∽△CAB時(shí),如圖3,此時(shí)有∠A=∠CFE, ∠B=∠CEF,又∠A+∠B=90°,所以∠A+∠CEF=90°, ∠B+∠CFE=90°,前面已證EF⊥CD,所以∠DCE+∠CEF=90°,∠DCF+∠CFE=90°,所以∠A=∠ACD, ∠B=∠BCD,所以AD=CD=BD=2.5;(2)利用折疊前后對(duì)應(yīng)的部分關(guān)于折疊線對(duì)稱,以及直角三角形斜邊上的中線等于斜邊的一半,即可求得∠A=∠CFE, ∠B=∠CEF,所以得證.

 

試題解析:(1)①;②

(2)△CEF與△ABC相似.理由如下:

如圖,連接CD,與EF交于點(diǎn)Q.

∵CD是Rt△ABC的中線,

∴CD=DB=AB,∴∠DCB=∠B.

由折疊性質(zhì)可知,∠CQF=∠DQF=90°,

∴∠DCB+∠CFE=90°,

∵∠B+∠A=90°,

∴∠CFE=∠A,

又∵∠ECF=∠BCA,

∴△CEF∽△CBA.

考點(diǎn):1、相似三角形的性質(zhì);2、相似三角形的判定.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠ACB=90°,AC=BC,D是AB的中點(diǎn),E、F分別在AC、BC上,且ED⊥FD.求證:S四邊形EDFC=
12
S△ABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

3、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D.下列結(jié)論中,不一定成立的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湛江模擬)如圖,在Rt△AB′C′中,∠AC′B′=90°,∠B′AC′=45°,B′C′=3,Rt△ABC可以看作是由Rt△AB′C′繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)45°得到的,則AC的長(zhǎng)為
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,在Rt△AB′C′中,∠AC′B′=90°,∠B′AC′=45°,B′C′=3,Rt△ABC可以看作是由Rt△AB′C′繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)45°得到的,則AC的長(zhǎng)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年廣東省湛江市中考調(diào)研數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,在Rt△AB′C′中,∠AC′B′=90°,∠B′AC′=45°,B′C′=3,Rt△ABC可以看作是由Rt△AB′C′繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)45°得到的,則AC的長(zhǎng)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案