【題目】(2016湖北省荊州市第21題)如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點D′未到達點B時,A′C′交CD于E,D′C′交CB于點F,連接EF,當(dāng)四邊形EDD′F為菱形時,試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請說明理由.
【答案】△A′DE是等腰三角形;證明過程見解析.
【解析】
試題分析:當(dāng)四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.先證明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判斷△DA′E的形狀.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根據(jù)A′D=DE=EF即可證明.
試題解析:當(dāng)四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.
理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB, ∴CD=DA=DB, ∴∠DAC=∠DCA,
∵A′C∥AC, ∴∠DA′E=∠A,∠DEA′=∠DCA, ∴∠DA′E=∠DEA′, ∴DA′=DE,
∴△A′DE是等腰三角形. ∵四邊形DEFD′是菱形, ∴EF=DE=DA′,EF∥DD′,
∴∠CEF=∠DA′E,∠EFC=∠CD′A′, ∵CD∥C′D′, ∴∠A′DE=∠A′D′C=∠EFC,
在△A′DE和△EFC′中,, ∴△A′DE≌△EFC′.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AC與BD交于點D,且OA =OC,請?zhí)砑右粋條件,使△OA B≌△OCD,這個條件是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】微電子技術(shù)的不斷進步,使半導(dǎo)體材料的精細加工尺寸大幅度縮小,某種電子元件的面積大約為0.0000005平方毫米,用科學(xué)記數(shù)法表示為____平方毫米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.一組對邊平行且相等的四邊形是平行四邊形B.對角線相等的四邊形是矩形
C.對角線相等的平行四邊形是正方形D.對角線互相垂直的四邊形是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從A地駛向B地,并以各自的速度勻速行駛,甲車比乙車早行駛2 h,并且甲車途中休息了0.5 h,如圖是甲、乙兩車行駛的路程y(km)與時間x(h)的函數(shù)圖象.
(1)求出圖中m和a的值.
(2)求出甲車行駛的路程y(km)與時間x(h)的函數(shù)關(guān)系式,并寫出相應(yīng)的x的取值范圍.
(3)當(dāng)乙車行駛多長時間時,兩車恰好相距50 km?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com