(2012•岱岳區(qū)二模)已知,如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC=
5
,對(duì)角線AC,BD交于O點(diǎn),將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交BC,AD于點(diǎn)E,F(xiàn).
(1)求證:當(dāng)旋轉(zhuǎn)角為90°時(shí),四邊形ABEF是平行四邊形;
(2)在旋轉(zhuǎn)過(guò)程中,四邊形BEDF可能是菱形嗎?如果不能,請(qǐng)說(shuō)明理由;如能,說(shuō)明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).
分析:(1)根據(jù)∠BAC=∠AOF=90°推出AB∥EF,根據(jù)平行四邊形性質(zhì)得出AF∥BE,即可推出四邊形ABEF是平行四邊形;
(2)證△DFO≌△BEO,推出OF=OE,得出四邊形BEDF是平行四邊形,根據(jù)勾股定理求出AC,求出OA=AB=1,求出∠AOB=45°,根據(jù)∠AOF=45°,推出EF⊥BD,根據(jù)菱形的判定推出即可.
解答:(1)證明:∵∠AOF=90°,∠BAO=90°,
∴AB∥EF,
又∵平行四邊形ABCD,
∴AF∥EB,
∴四邊形ABEF是平行四邊形;

(2)當(dāng)旋轉(zhuǎn)角∠AOF=45°時(shí),四邊形BEDF是菱形,理由如下:
∵平行四邊形ABCD,
∴AD∥BC,BO=DO,
∴∠FDO=∠EBO,∠DFO=∠BEO,
在△DFO和△BEO中
∠DFO=∠BEO
∠FDO=∠EBO
OD=OB
,
∴△DFO≌△BEO(AAS),
∴OF=OE,
∴四邊形BEDF是平行四邊形,
∵AB=1,BC=
5
,
∴在Rt△BAC中,由勾股定理得:AC=2,
∴AO=1=AB,
∴∠AOB=45°,
又∵∠AOF=45°,
∴∠BOF=90°,
∴BD⊥EF,
∴四邊形BEDF是菱形,
即在旋轉(zhuǎn)過(guò)程中,四邊形BEDF能是菱形,此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù)是45°.
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,平行四邊形的性質(zhì)和判定.菱形的判定等知識(shí)點(diǎn)的綜合運(yùn)用,主要考查學(xué)生綜合運(yùn)用性質(zhì)進(jìn)行推理的能力,此題綜合性比較強(qiáng),但是一道比較好的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•岱岳區(qū)二模)半徑為2的⊙O與正方形ABCD相切于點(diǎn)P、Q,弦MN=2
3
,且MN在正方形的對(duì)角線BD上,則正方形的邊長(zhǎng)為
4+
2
或4-
2
4+
2
或4-
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•岱岳區(qū)二模)2011年11月份,鹿城區(qū)環(huán)境檢測(cè)中心的關(guān)于“水心菜籃子”某一周空氣質(zhì)量報(bào)告中某項(xiàng)污染指數(shù)的數(shù)據(jù)如表所示,這組數(shù)據(jù)的眾數(shù)是( 。
檢測(cè)時(shí)間 周一 周二 周三 周四 周五 周六 周日
污染指數(shù) 21 22 21 24 20 22 21

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•岱岳區(qū)二模)四個(gè)全等的直角三角形圍成一個(gè)大正方形,中間空出的部分是一個(gè)小正方形,這樣就組成了一個(gè)“趙爽弦圖”(如圖).如果小正方形面積為4,大正方形面積為74,直角三角形中較小的銳角為θ,那么cosθ的值是
7
74
74
7
74
74

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•岱岳區(qū)二模)某超市第一次用3000元從生產(chǎn)基地購(gòu)進(jìn)某品種水果,很快售完,第二次又用2400元購(gòu)進(jìn)相同品種的水果,第二次購(gòu)進(jìn)水果每千克的進(jìn)價(jià)是第一次的1.2倍,且重量比第一次少了20千克.
(1)求兩次購(gòu)進(jìn)水果每千克的進(jìn)價(jià)分別是多少元?
(2)在這兩次購(gòu)進(jìn)水果的運(yùn)輸過(guò)程中,總重量損失10%,若這兩次水果的售價(jià)相同,全部售完后超市至少要獲得20%的總利潤(rùn),則該水果的售價(jià)最低應(yīng)定為每千克多少元?(結(jié)果保留整數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案