如圖,在梯形ABCD中,∠A=∠B=90°,AB=,點E在AB上,∠AED=45°,DE=6,CE=7.求:AE的長及sin∠BCE的值.

【答案】分析:(1)在Rt△DAE中,∠A=90°,∠AED=45°,DE=6,根據(jù)這些條件利用余弦函數(shù)求AE;
(2)在Rt△BCE中,EC=7,再利用(1)的解答結(jié)果,根據(jù)正弦函數(shù)來解答sin∠BCE的值.
解答:解:(1)如圖,在Rt△DAE中,∠A=90°,∠AED=45°,DE=6.
,(2分)
∴AE=DE×cos∠AED               (3分)
=6×cos45°                     (4分)
=.                          (5分)

(2)∵BE=AB-AE,(6分)
.       (7分)
在Rt△BCE中,EC=7,
(8分)
=.                        (9分)
點評:本題考查了解直角三角形中三角函數(shù)的應用,要熟練掌握好邊角之間的關(guān)系.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對角線AC、BD交于點O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點E,這個梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習冊答案