【題目】某興趣小組開展課外活動.如圖,A,B兩地相距12米,小明從點A出發(fā)沿AB方向勻速前進,2秒后到達點D,此時他(CD)在某一燈光下的影長為AD,繼續(xù)按原速行走2秒到達點F,此時他在同一燈光下的影子仍落在其身后,并測得這個影長為1.2米,然后他將速度提高到原來的1.5倍,再行走2秒到達點H,此時他(GH)在同一燈光下的影長為BH(點C,E,G在一條直線上).

(1)請在圖中畫出光源O點的位置,并畫出他位于點F時在這個燈光下的影長FM(不寫畫法)
(2)求小明原來的速度。

【答案】
(1)

解:如圖,


(2)

解:設(shè)小明原來的速度為xm/s,則CE=2xm,AM=AF﹣MF=(4x﹣1.2)m,EG=2×1.5x=3xm,BM=AB﹣AM=12﹣(4x﹣1.2)=13.2﹣4x,

∵點C,E,G在一條直線上,CG∥AB,

∴△OCE∽△OAM,△OEG∽△OMB,

==,

=,即=,

解得x=1.5,經(jīng)檢驗x=1.5為方程的解,

∴小明原來的速度為1.5m/s.

答:小明原來的速度為1.5m/s.


【解析】(1)利用中心投影的定義畫圖;
(2)設(shè)小明原來的速度為xm/s,則CE=2xm,AM=AF﹣MF=(4x﹣1.2)m,EG=2×1.5x=3xm,BM=AB﹣AM=12﹣(4x﹣1.2)=13.2﹣4x,根據(jù)相似三角形的判定方法得到△OCE∽△OAM,△OEG∽△OMB,列出方程求解即可
【考點精析】解答此題的關(guān)鍵在于理解相似三角形的應用的相關(guān)知識,掌握測高:測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達兩點間的舉例,常構(gòu)造相似三角形求解,以及對中心投影的理解,了解手電筒、路燈和臺燈的光線可以看成是從一個點發(fā)出的,這樣的光線所形成的投影稱為中心投影;作一物體中心投影的方法:過投影中心與物體頂端作直線,直線與投影面的交點與物體的底端之間的線段即為物體的影子.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF,連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.
(1)請判斷:FG與CE的數(shù)量關(guān)系是 , 位置關(guān)系是;
(2)如圖2,若點E、F分別是CB、BA延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請出判斷判斷并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種商品的進價為40元/件,以獲利不低于25%的價格銷售時,商品的銷售單價y(元/件)與銷售數(shù)量x(件)(x是正整數(shù))之間的關(guān)系如下表:

x(件)

5

10

15

20

y(元/件)

75

70

65

60


(1)由題意知商品的最低銷售單價是___元,當銷售單價不低于最低銷售單價時,y是x的一次函數(shù).求出y與x的函數(shù)關(guān)系式及x的取值范圍;
(2)在(1)的條件下,當銷售單價為多少元時,所獲銷售利潤最大,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD中,E為AD的中點,BE,CD的延長線相交于點F,若△DEF的面積為1,則ABCD的面積等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC,BD相交于點O,分別延長OA,OC到點E,F(xiàn),使AE=CF,依次連接B,F(xiàn),D,E各點.

(1)求證:△BAE≌△BCF
(2)若∠ABC=50°,則當∠EBA=°時,四邊形BFDE是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)計算:(1+|1﹣|﹣tan30°;
(2)化簡:÷().

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線l⊥AB于點B,點C在AB上,且AC:CB=2:1,點M是直線l上的動點,作點B關(guān)于直線CM的對稱點B′,直線AB′與直線CM相交于點P,連接PB.

(1)如圖2,若點P與點M重合,則∠PAB= , 線段PA與PB的比值為

(2)如圖3,若點P與點M不重合,設(shè)過P,B,C三點的圓與直線AP相交于D,連接CD,求證:①CD=CB′;②PA=2PB

(3)如圖4,若AC=2,BC=1,則滿足條件PA=2PB的點都在一個確定的圓上,在以下小題中選做一題:
①如果你能發(fā)現(xiàn)這個確定的圓的圓心和半徑,那么不必寫出發(fā)現(xiàn)過程,只要證明這個圓上的任意一點Q,都滿足QA=2QB;
②如果你不能發(fā)現(xiàn)這個確定的圓的圓心和半徑,那么請取出幾個特殊位置的P點,如點P在直線AB上,點P與點M重合等進行探究,求這個圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C,D在同一條直線上,點E,F(xiàn)分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC.

(1)求證:四邊形BFCE是平行四邊形
(2)若AD=10,DC=3,∠EBD=60°,則BE= 時,四邊形BFCE是菱形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△OAB的頂點A(﹣4,8)在拋物線y=ax2上,將Rt△OAB繞點O順時針旋轉(zhuǎn)90°,得到△OCD,邊CD與該拋物線交于點P,則點P的坐標為

查看答案和解析>>

同步練習冊答案