如圖,點P是直線l:y=-2x-2上的點,過點P的另一條直線m交拋物線y=x2于A、B兩點.
(1)若直線m的解析式為y=-x+,求A,B兩點的坐標;
(2)①若點P的坐標為(-2,t).當PA=AB時,請直接寫出點A的坐標;
②試證明:對于直線l上任意給定的一點P,在拋物線上能找到點A,使得PA=AB成立.
(3)設直線l交y軸于點C,若△AOB的外心在邊AB上,且∠BPC=∠OCP,求點P的坐標.

【答案】分析:(1)聯(lián)立拋物線y=x2與直線y=-x+的解析式,求出點A、B的坐標.
(2)①如答圖1所示,求出點P坐標(-2,2),設A(m,m2).作輔助線,構造直角梯形PGFB,AE為中位線,求出點B的坐標(用含m的代數(shù)式表示),然后代入拋物線的解析式求出m的值;
②與①解題思路一致.設P(a,-2a-2),A(m,m2).作輔助線,構造直角梯形PGFB,AE為中位線,求出點B的坐標(用含a、m的代數(shù)式表示),然后代入拋物線的解析式得到關于m的一元二次方程,根據(jù)其判別式大于0,可證明題中結論成立.
(3)△AOB的外心在邊AB上,則AB為△AOB外接圓的直徑,∠AOB=90°.設A(m,m2),B(n,n2).作輔助線,證明△AEO∽△OFB,得到mn=-1.再聯(lián)立直線m:y=kx+b與拋物線y=x2的解析式,由根與系數(shù)關系得到:mn=-b,所以b=1;由此得到OD、CD的長度,從而得到PD的長度;作輔助線,構造Rt△PDG,由勾股定理求出點P的坐標.
解答:解:(1)∵點A、B是拋物線y=x2與直線y=-x+的交點,
∴x2=-x+,
解得x=1或x=-
當x=1時,y=1;當x=-時,y=,
∴A(-,),B(1,1).

(2)①∵點P(-2,t)在直線y=-2x-2上,∴t=2,∴P(-2,2).
設A(m,m2),如答圖1所示,分別過點P、A、B作x軸的垂線,垂足分別為點G、E、F.

∵PA=AB,
∴AE是梯形PGFB的中位線,
∴GE=EF,AE=(PG+BF).
∵GE=EF=OE+OF,∴OF=GE-OE=2+2m.
∵AE=(PG+BF),∴BF=2AE-PG=2m2-2.
∴B(2+2m,2m2-2).
∵點B在拋物線y=x2上,
∴2m2-2=(2+2m)2
解得:m=-1或-3,
當m=-1時,m2=1;當m=-3時,m2=9
∴點A的坐標為(-1,1)或(-3,9).
②設P(a,-2a-2),A(m,m2).
如答圖1所示,分別過點P、A、B作x軸的垂線,垂足分別為點G、E、F.
與①同理可求得:B(2m-a,2m2+2a+2).
∵點B在拋物線y=x2上,
∴2m2+2a+2=(2m-a)2
整理得:2m2-4am+a2-2a-2=0.
△=16a2-8(a2-2a-2)=8a2+16a+16=8(a+1)2+8>0,
∴無論a為何值時,關于m的方程總有兩個不相等的實數(shù)根.即對于任意給定的點P,拋物線上總能找到兩個滿足條件的點A,使得PA=AB成立.

(3)∵△AOB的外心在邊AB上,∴AB為△AOB外接圓的直徑,∴∠AOB=90°.
設A(m,m2),B(n,n2),
如答圖2所示,過點A、B分別作x軸的垂線,垂足為E、F,則易證△AEO∽△OFB.

,即,整理得:mn(mn+1)=0,
∵mn≠0,∴mn+1=0,即mn=-1.
設直線m的解析式為y=kx+b,聯(lián)立,得:x2-kx-b=0.
∵m,n是方程的兩個根,∴mn=-b.
∴b=1.
設直線m與y軸交于點D,則OD=1.
易知C(0,-2),OC=2,∴CD=OC+OD=3.
∵∠BPC=∠OCP,∴PD=CD=3.
設P(a,-2a-2),過點P作PG⊥y軸于點G,則PG=-a,GD=OG-OD=-2a-3.
在Rt△PDG中,由勾股定理得:PG2+GD2=PD2,
即:(-a)2+(-2a-3)2=32,整理得:5a2+12a=0,
解得a=0(舍去)或a=-,
當a=-時,-2a-2=
∴P(-,).
點評:本題是二次函數(shù)綜合題型,考查了二次函數(shù)與一次函數(shù)的圖象與性質、梯形及梯形中位線、勾股定理、相似三角形、一元二次方程等知識點,有一定的難度.第(2)問中,注意根的判別式的應用,第(3)問中,注意根與系數(shù)關系的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點A是直線y=2x與曲線y=
m-1x
(m為常數(shù))一支的交點.過點A作x軸的垂線,垂足為B,且OB=2.求點A的坐標及m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點A是直線y=-x+5和雙曲線y=
6
x
在第一象限的一個交點,過A作∠OAB=∠AOX交x軸于B點,AC⊥x軸,垂足為C,則△ABC的周長為( 。
A、4
7
B、5
C、2
7
D、
22

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點A是直線y=-2x+3上的動點,過點A作AB垂直x軸于點B,y軸上存在點C,能使以A、B、C為頂點的三角形是等腰直角三角形.請寫出所有符合條件的點C的坐標
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、如圖,點O是直線AB上一點,OC平分∠AOB,在直線AB另一側以O為頂點作∠DOE=90°
(1)若∠AOE=48°,那么∠BOD=
42°
;∠AOE與∠DOB的關系是
互余

(2)∠AOE與∠COD有什么數(shù)量關系?請寫出你的結論并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點P是直線m上一點,點Q是直線m外一點,
(1)過點P作直線m的垂線PA;
(2)過點Q作QC∥m交直線PA于點C;
(3)過點Q作直線m的垂線段QB,垂足為B;
(4)點Q到直線m的距離是線段
QB
QB
的長度;
(5)點Q到直線PA的距離是線段
QC
QC
的長度.

查看答案和解析>>

同步練習冊答案