(2007•臨夏州)在平面幾何中,我們可以證明:周長(zhǎng)一定的多邊形中,正多邊形面積最大.使用上邊的事實(shí),解答下面的問(wèn)題:
用長(zhǎng)度分別為2、3、4、5、6(單位:cm)的五根木棒圍成一個(gè)三角形(允許連接,但不允許折斷),求能夠圍成的三角形的最大面積.
分析:根據(jù)已知得出取三邊盡量接近,使圍成的三角形盡量接近正三角形,則面積最大. 此時(shí),三邊為6、5+2、4+3,這是一個(gè)等腰三角形,再求出三角形的高,即可得出面積.
解答:解:因?yàn)橹荛L(zhǎng)一定(2+3+4+5+6=20cm)的三角形中,以正三角形的面積最大.
取三邊盡量接近,使圍成的三角形盡量接近正三角形,則面積最大.    
此時(shí),三邊為6、5+2、4+3,這是一個(gè)等腰三角形.
即AB=AC=7cm,BC=6cm,
∴AD=
49-9
=2
10
(cm),
∴最大面積為:
1
2
×6×2
10
=6
10
(cm2).
點(diǎn)評(píng):此題主要考查了三角形面積求法以及正多邊形的性質(zhì),根據(jù)已知得出三邊為6、5+2、4+3時(shí)面積最大是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•臨夏州)3張撲克牌如圖(1)所示放在桌子上,小敏把其中一張旋轉(zhuǎn)180°后得到如圖(2)所示,則她所旋轉(zhuǎn)的牌從左數(shù)起是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•臨夏州)順次連結(jié)任意四邊形各邊中點(diǎn)所得到的四邊形一定是
平行四邊形
平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•臨夏州)[(1)-(3),10分]如圖,已知等邊△ABC和點(diǎn)P,設(shè)點(diǎn)P到△ABC三邊AB、AC、BC(或其延長(zhǎng)線(xiàn))的距離分別為h1、h2、h3,△ABC的高為h.
在圖(1)中,點(diǎn)P是邊BC的中點(diǎn),此時(shí)h3=0,可得結(jié)論:h1+h2+h3=h.
在圖(2)--(5)中,點(diǎn)P分別在線(xiàn)段MC上、MC延長(zhǎng)線(xiàn)上、△ABC內(nèi)、△ABC外.
(1)請(qǐng)?zhí)骄浚簣D(2)--(5)中,h1、h2、h3、h之間的關(guān)系;(直接寫(xiě)出結(jié)論)
(2)證明圖(2)所得結(jié)論;
(3)證明圖(4)所得結(jié)論.
(4)在圖(6)中,若四邊形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,點(diǎn)P在梯形內(nèi),且點(diǎn)P到四邊BR、RS、SC、CB的距離分別是h1、h2、h3、h4,橋形的高為h,則h1、h2、h3、h4、h之間的關(guān)系為:
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
;圖(4)與圖(6)中的等式有何關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2007•臨夏州)在直角坐標(biāo)系中,⊙A的半徑為4,圓心A的坐標(biāo)為(2,0),⊙A與x軸交于E、F兩點(diǎn),與y軸交于C、D兩點(diǎn),過(guò)點(diǎn)C作⊙A的切線(xiàn)BC,交x軸于點(diǎn)B.
(1)求直線(xiàn)CB的解析式;
(2)若拋物線(xiàn)y=ax2+bx+c的頂點(diǎn)在直線(xiàn)BC上,與x軸的交點(diǎn)恰為點(diǎn)E、F,求該拋物線(xiàn)的解析式;
(3)試判斷點(diǎn)C是否在拋物線(xiàn)上;
(4)在拋物線(xiàn)上是否存在三個(gè)點(diǎn),由它構(gòu)成的三角形與△AOC相似?直接寫(xiě)出兩組這樣的點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案