【題目】小趙投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),當月內銷售單價不變,則月銷售量y(件)與銷售單價x(元)之間的關系可近似的看作一次函數(shù):.
(1)設小趙每月獲得利潤為w(元),當銷售單價定為多少元時,每月可獲得最大利潤?并求出最大利潤.
(2)如果小趙想要每月獲得的利潤不低于2000元,那么如何制定銷售單價才可以實現(xiàn)這一目標?
【答案】(1)當銷售單價定為35元時,每月獲得的利潤最大,最大利潤為2250元;
(2)如果小趙想要每月獲得的利潤不低于2000元,那么他的銷售單價應不低于30元而不高于40元.
【解析】
試題(1)根據(jù)總利潤=單利潤×銷售量即可得到函數(shù)關系式,再根據(jù)二次函數(shù)的性質即得結果;
(2)先求得利潤為2000元時對應的銷售單價,再根據(jù)二次函數(shù)的性質即可求得結果.
(1)由題意得w=(x-20)·y=(x-20)·()
當時,;
(2)由題意得
解得x1 =30,x2 =40
即小趙想要每月獲得2000元的利潤,銷售單價應定為30元或40元
∵
∴拋物線開口向下
∴當30≤x≤40時,w≥2000
答:(1)當銷售單價定為35元時,每月可獲得最大利潤,且最大利潤為2250元;
(2)如果小趙想要每月獲得的利潤不低于2000元,那么他的銷售單價應不低于30元而不高于40元.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在等腰直角三角形中,,為的中點,且,垂足為點,過點作交的延長線于點,聯(lián)結.
(1)求證:;
(2)連接,試判斷的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示的是一種置于桌面上的簡易臺燈,將其結構簡化成圖2,燈桿AB與CD交于點O(點O固定),燈罩連桿CE始終保持與AB平行,燈罩下方FG處于水平位置,測得OC=20cm,∠COB=70°,∠F=40°,EF=EG,點G到OB的距離為12cm.
(1)求∠CEG的度數(shù).
(2)求燈罩的寬度(FG的長;結果精確到0.1cm,可用科學計算器).
(參考數(shù)據(jù):sin40°≈0.643,cos40°≈0.766,sin70°≈0.940,cos70°≈0.342)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場試銷一種成本為8元/千克的水果,經(jīng)試銷發(fā)現(xiàn),銷量y(千克)與銷售單價x(元)符合一次函數(shù)y=kx+b,且當x=10時,y=300;當x=13時,y=150.
(1)求y(千克)與x(元)(x>8)的函數(shù)關系式;
(2)設該超市銷售這種水果每天獲取的利潤為W元,那么當銷售單價為何值時,每天可獲得的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖的直角坐標系中,已知點A(2,0)、B(0,-4),將線段AB繞點A按逆時針方向旋轉90°至AC.
(1)求點C的坐標;
(2)若拋物線y=-x2+ax+4經(jīng)過點C.
①求拋物線的解析式;
②在拋物線上是否存在點P(點C除外)使△ABP是以AB為直角邊的等腰直角三角形?若存在,求出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某數(shù)學興趣小組為了測量河對岸l1的兩棵古樹A、B之間的距離,他們在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則古樹A、B之間的距離為_____m.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系內,△ABC各頂點的坐標分別是A(﹣2,4),B(﹣4,3),C(﹣1,1).將△ABC向右平移5個單位長度,再向下平移4個單位長度得到△A′B′C′.
(1)請作出平移后的△A′B′C′,并寫出△A′B′C′各頂點的坐標;
(2)如果將△A′B′C′看成是由△ABC經(jīng)過一次平移得到的,請指出這一平移的平移方向和平移距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為宣傳“掃黑除惡”專項行動,社區(qū)準備制作一幅宣傳版面,噴繪時為了美觀,要在矩形圖案四周外圍增加一圈等寬的白邊,已知圖案的長為2米,寬為1米,圖案面積占整幅宣傳版面面積的90%,若設白邊的寬為x米,則根據(jù)題意可列出方程( )
A. 90%×(2+x)(1+x)=2×1 B. 90%×(2+2x)(1+2x)=2×1
C. 90%×(2﹣2x)(1﹣2x)=2×1 D. (2+2x)(1+2x)=2×1×90%
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com