正方形A1B1C1OA2B2C2C1A3B3C3C2,…按如圖所示的方式放置.點(diǎn)A1,A2,A3,…和點(diǎn)C1,C2C3,…分別在直線(k>0)和x軸上,已知點(diǎn)B1(1,1),B2(3,2), 則Bn的坐標(biāo)是_______
A1的坐標(biāo)是(0,1),A2的坐標(biāo)是:(1,2),
根據(jù)題意得: b=1,k+b=2,
解得: b=1,k=1.
則直線的解析式是:y=x+1.
∵A1B1=1,點(diǎn)B2的坐標(biāo)為(3,2),
∴A1的縱坐標(biāo)是1,A2的縱坐標(biāo)是2.
在直線y=x+1中,令x=3,則縱坐標(biāo)是:3+1=4=22;
則A4的橫坐標(biāo)是:1+2+4=7,則A4的縱坐標(biāo)是:7+1=8=23
據(jù)此可以得到An的縱坐標(biāo)是:2n-1,橫坐標(biāo)是:2n-1-1.
由圖知,An的縱坐標(biāo)與Bn的縱坐標(biāo)相等,
B3的橫坐標(biāo)為1+2+4=7
∴Bn的橫坐標(biāo)為2n-1
Bn的坐標(biāo)是(2n-1, 2n-1)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知成正比例函數(shù)關(guān)系,且時(shí),。
(1)寫出之間的函數(shù)關(guān)系式;
(2)求當(dāng)時(shí),的值;
(3)求當(dāng)時(shí),的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知一次函數(shù)y=kx+b(k≠0)經(jīng)過(2,﹣1)、(﹣3,4)兩點(diǎn),則它的圖象不經(jīng)過( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

直線y=x–1和y=x+3的位置關(guān)系是_____,由此可知方程組解的情況為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知在平面直角坐標(biāo)系中,直線               與x軸,y軸相交于A,B兩點(diǎn),
直線       與AB相交于C點(diǎn),點(diǎn)D從點(diǎn)O出發(fā),以每秒1個(gè)單位的速度沿x軸向右運(yùn)
動(dòng)到點(diǎn)A,過點(diǎn)D作x軸的垂線,分別交直線        和直線               于P,Q兩點(diǎn)(P點(diǎn)不與C點(diǎn)重合),以PQ為邊向左作正△PQR,設(shè)正△PQR與△OBC重疊部分的面積為S(平方單位),點(diǎn)D的運(yùn)動(dòng)時(shí)間為t(秒)
(1)求點(diǎn)A,B,C的坐標(biāo); (2)若點(diǎn)           正好在△PQR的某邊上,求t的值;
(3)求S關(guān)于t的函數(shù)關(guān)系式,并寫出相應(yīng)t的取值范圍,     
求出D在整個(gè)運(yùn)動(dòng)過程中s的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

現(xiàn)有一個(gè)種植總面積為540m2的矩形塑料溫棚,分壟間隔套種草莓和西紅柿共24壟,種植的草莓或西紅柿單種農(nóng)作物的總壟數(shù)不低于10壟,又不超過14壟(壟數(shù)為正整數(shù)),它們的占地面積、產(chǎn)量、利潤分別如下:
 
占地面積(m/壟)
產(chǎn)量(千克/壟)
利潤(元/千克)
西紅柿
30
160
1.1
草莓
15
50
1.6
(1)若設(shè)草莓共種植了壟,通過計(jì)算說明共有幾種種植方案?分別是哪幾種?
(2)在這幾種種植方案中,哪種方案獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上以每秒1個(gè)單位的速度由C向B運(yùn)動(dòng)。
(1) 求梯形ODPC的面積S與時(shí)間t的函數(shù)關(guān)系式。
(2) t為何值時(shí),四邊形PODB是平行四邊形?
(3) 在線段PB上是否存在一點(diǎn)Q,使得ODQP為菱形。若存在求t值,若不存在,說明理由。
(4) 當(dāng)△OPD為等腰三角形時(shí),求點(diǎn)P的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一次函數(shù)的圖象如圖所示,當(dāng)-3 <  < 3時(shí), 的取值范圍是(    )
A.>4B.0<<2C.0<<4D.2<<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

)對(duì)于平面直角坐標(biāo)系中的任意兩點(diǎn)P1(x1,y1),P2(x2,y2),我們把|x1﹣x2|+|y1﹣y2|叫做P1、P2兩點(diǎn)間的直角距離,記作d(P1,P2).
(1)已知O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P(x,y)滿足d(O,P)=1,請(qǐng)寫出x與y之間滿足的關(guān)系式,并在所給的直角坐標(biāo)系中畫出所有符合條件的點(diǎn)P所組成的圖形;
(2)設(shè)P0(x0,y0)是一定點(diǎn),Q(x,y)是直線y=ax+b上的動(dòng)點(diǎn),我們把d(P0,Q)的最小值叫做P0到直線y=ax+b的直角距離.試求點(diǎn)M(2,1)到直線y=x+2的直角距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案