如圖,直線x=﹣4與x軸交于點(diǎn)E,一開(kāi)口向上的拋物線過(guò)原點(diǎn)交線段OE于點(diǎn)A,交直線x=﹣4于點(diǎn)B,過(guò)B且平行于x軸的直線與拋物線交于點(diǎn)C,直線OC交直線AB于D,且AD:BD=1:3.

(1)求點(diǎn)A的坐標(biāo);

(2)若△OBC是等腰三角形,求此拋物線的函數(shù)關(guān)系式.

 

【答案】

(1)(﹣2,0);(2)y=x2+x或y=x2+x.

【解析】

試題分析:(1)過(guò)點(diǎn)D作DF⊥x軸于點(diǎn)F,由拋物線的對(duì)稱性可知OF=AF,則2AF+AE=4①,由DF∥BE,得到△ADF∽△ABE,根據(jù)相似三角形對(duì)應(yīng)邊成比例得出=,即AE=2AF②,①與②聯(lián)立組成二元一次方程組,解出AE=2,AF=1,進(jìn)而得到點(diǎn)A的坐標(biāo);

(2)先由拋物線過(guò)原點(diǎn)(0,0),設(shè)此拋物線的解析式為y=ax2+bx,再根據(jù)拋物線過(guò)原點(diǎn)(0,0)和A點(diǎn)(﹣2,0),求出對(duì)稱軸為直線x=﹣1,則由B點(diǎn)橫坐標(biāo)為﹣4得出C點(diǎn)橫坐標(biāo)為2,BC=6.再由OB>OC,可知當(dāng)△OBC是等腰三角形時(shí),可分兩種情況討論:①當(dāng)OB=BC時(shí),設(shè)B(﹣4,y1),列出方程,解方程求出y1的值,將A,B兩點(diǎn)坐標(biāo)代入y=ax2+bx,運(yùn)用待定系數(shù)法求出此拋物線的解析式;②當(dāng)OC=BC時(shí),設(shè)C(2,y2),列出方程,解方程求出y2的值,將A,C兩點(diǎn)坐標(biāo)代入y=ax2+bx,運(yùn)用待定系數(shù)法求出此拋物線的解析式.

試題解析:(1)如圖,過(guò)點(diǎn)D作DF⊥x軸于點(diǎn)F.

由題意,可知OF=AF,則2AF+AE=4①.

∵DF∥BE,

∴△ADF∽△ABE,

=,即AE=2AF②,

①與②聯(lián)立,解得AE=2,AF=1,

∴點(diǎn)A的坐標(biāo)為(﹣2,0);

(2)∵拋物線過(guò)原點(diǎn)(0,0),

∴可設(shè)此拋物線的解析式為y=ax2+bx.

∵拋物線過(guò)原點(diǎn)(0,0)和A點(diǎn)(﹣2,0),

∴對(duì)稱軸為直線x==﹣1,

∵B、C兩點(diǎn)關(guān)于直線x=﹣1對(duì)稱,B點(diǎn)橫坐標(biāo)為﹣4,

∴C點(diǎn)橫坐標(biāo)為2,

∴BC=2﹣(﹣4)=6.

∵拋物線開(kāi)口向上,

∴∠OAB>90°,OB>AB=OC,

∴當(dāng)△OBC是等腰三角形時(shí),分兩種情況討論:

①當(dāng)OB=BC時(shí),設(shè)B(﹣4,y1),

則16+=36,解得y1=±2(負(fù)值舍去).

將A(﹣2,0),B(﹣4,2)代入y=ax2+bx,

,解得

∴此拋物線的解析式為y=x2+x;

②當(dāng)OC=BC時(shí),設(shè)C(2,y2),

則4+=36,解得y2=±4(負(fù)值舍去).

將A(﹣2,0),C(2,4)代入y=ax2+bx,

,解得

∴此拋物線的解析式為y=x2+x.

綜上可知,若△OBC是等腰三角形,此拋物線的函數(shù)關(guān)系式為y=x2+x或y=x2+x.

考點(diǎn): 二次函數(shù)綜合題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線y=k1x與雙曲線y=
k2x
交于A、B兩點(diǎn),那么點(diǎn)B的坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線y=x與反比例函數(shù)y=
k
x
(x>0)的圖象交于點(diǎn)A,AB⊥y軸,垂足為B,點(diǎn)C在射線BA上(端點(diǎn)除外),點(diǎn)E在x軸上,且∠OCE=90°,CH⊥x軸,垂足為H,并與反比例函數(shù)y=
k
x
圖象交于點(diǎn)G.
(1)若點(diǎn)B的坐標(biāo)為(0,4),求k的值;
(2)在(1)的條件下,求證:HG=HE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•張家界)如圖,直線x=2與反比例函數(shù)y=
2
x
y=-
1
x
的圖象分別交于A、B兩點(diǎn),若點(diǎn)P是y軸上任意一點(diǎn),則△PAB的面積是
3
2
3
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•錦州)如圖,直線y=mx與雙曲線y=
k
x
交于A,B兩點(diǎn),過(guò)點(diǎn)A作AM⊥x軸,垂足為點(diǎn)M,連接BM,若S△ABM=2,則k的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線y=mx與雙曲線y=
k
x
交于A、B兩點(diǎn),過(guò)點(diǎn)A作AM⊥x軸,垂足為M,連結(jié)BM,若S△ABM=3,則k的值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案