(2012•貴港)如圖,已知△ABC,且∠ACB=90°.
(1)請用直尺和圓規(guī)按要求作圖(保留作圖痕跡,不寫作法和證明):
①以點A為圓心,BC邊的長為半徑作⊙A;
②以點B為頂點,在AB邊的下方作∠ABD=∠BAC.
(2)請判斷直線BD與⊙A的位置關(guān)系(不必證明).
分析:(1)①以點A為圓心,以BC的長度為半徑畫圓即可;
②以點A為圓心,以任意長為半徑畫弧,與邊AB、AC相交于兩點E、F,再以點B為圓心,以同等長度為半徑畫弧,與AB相交于一點M,再以點M為圓心,以EF長度為半徑畫弧,與前弧相交于點N,作射線BN即可得到∠ABD;
(2)根據(jù)內(nèi)錯角相等,兩直線平行可得AC∥BD,再根據(jù)平行線間的距離相等可得點A到BD的距離等于BC的長度,然后根據(jù)直線與圓的位置關(guān)系判斷直線BD與⊙A相切.
解答:解:(1)如圖所示;


(2)直線BD與⊙A相切.
∵∠ABD=∠BAC,
∴AC∥BD,
∵∠ACB=90°,⊙A的半徑等于BC,
∴點A到直線BD的距離等于BC,
∴直線BD與⊙A相切.
點評:本題考查了復(fù)雜作圖,主要利用了作一個角等于已知角,直線與圓的位置關(guān)系的判斷,是基本作圖,難度不大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•貴港)如圖,在?ABCD中,延長CD到E,使DE=CD,連接BE交AD于點F,交AC于點G.
(1)求證:AF=DF;
(2)若BC=2AB,DE=1,∠ABC=60°,求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•貴港)如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,AD=5,BC=9,以A為中心將腰AB順時針旋轉(zhuǎn)90°至AE,連接DE,則△ADE的面積等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•貴港)如圖,直線y=
1
4
x與雙曲線y=
k
x
相交于A、B兩點,BC⊥x軸于點C(-4,0).
(1)求A、B兩點的坐標及雙曲線的解析式;
(2)若經(jīng)過點A的直線與x軸的正半軸交于點D,與y軸的正半軸交于點E,且△AOE的面積為10,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•貴港)如圖是由若干個大小相同的正方體搭成的幾何體的三視圖,則該幾何體所用的正方體的個數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•貴港)如圖,PA、PB是⊙O的切線,A、B是切點,點C是劣弧AB上的一個動點,若∠P=40°,則∠ACB的度數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊答案