如圖,AD是△ABC的角平分線,過點D作直線DF∥BA,交△ABC的外角平分線AF于點F,DF與AC交于點E.
求證:DE=EF.
分析:根據(jù)角平分線的性質(zhì)和平行線的性質(zhì)證得∠3=∠ADE、∠2=∠F后得到DE=EA、EF=EA,從而證得結(jié)論.
解答:證明:∵AD是△ABC的角平分線,AF平分△ABC的外角,
∴∠1=∠2,∠3=∠4,
∵DF∥BA,
∴∠4=∠ADE,∠1=∠F
∴∠3=∠ADE,∠2=∠F
∴DE=EA EF=EA
∴DE=EF
點評:本題考查了平行線的性質(zhì)及等腰三角形的判定與性質(zhì),找到第三條線段是證明兩條線段相等的常用的方法.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

14、如圖,AD是△ABC的高線,且AD=2,若將△ABC及其高線平移到△A′B′C′的位置,則A′D′和B′D′位置關(guān)系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC是角平分線,DE⊥AB于點E,DF⊥AC于點F,連接EF交AD于點G,則AD與EF的位置關(guān)系是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、已知:如圖,AD是△ABC的角平分線,且 AB:AC=3:2,則△ABD與△ACD的面積之比為
3:2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC的邊BC上的中線,已知AB=5cm,AC=3cm.
(1)求△ABD與△ACD的周長之差.
(2)若AB邊上的高為2cm,求AC邊上的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD是△ABC的中線,CE是△ACD的中線,DF是△CDE的中線,如果△DEF的面積是2,那么△ABC的面積為( 。

查看答案和解析>>

同步練習冊答案