分析 圖(1)中,∠B+∠BED+∠D=360°,根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)進(jìn)行推導(dǎo)即可;圖(2)中,∠B+∠E=∠D,根據(jù)兩直線平行,同位角相等,以及三角形外角性質(zhì)進(jìn)行推導(dǎo)即可;圖(3)中,∠ABE-∠E=∠D,根據(jù)兩直線平行,同位角相等,以及三角形外角性質(zhì)進(jìn)行推導(dǎo)即可.
解答 解:圖(1)中,∠B+∠BED+∠D=360°.
證明:過E作EF∥AB,
∵AB∥CD,
∴EF∥AB∥CD,
∴∠B+∠BEF=180°,∠D+∠DEF=180°,
∴∠B+∠BED+∠D=180°+180°=360°.
圖(2)中,∠B+∠E=∠D.
證明:∵AB∥CD,
∴∠D=∠AFE,
∵∠AFE是△BEF的外角,
∴∠B+∠E=∠AFE,
∴∠B+∠E=∠D.
圖(3)中,∠ABE-∠E=∠D.
證明:∵AB∥CD,
∴∠ABE=∠CFE,
∵∠CFE是△DEF的外角,
∴∠CFE-∠E=∠D,
∴∠ABE-∠E=∠D.
點(diǎn)評(píng) 本題主要考查了平行線的性質(zhì)以及三角形外角性質(zhì)的運(yùn)用,解決問題的關(guān)鍵是作輔助線,解題時(shí)注意:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7b}{3a}$ | B. | $\frac{7b}{3ac}$ | C. | $\frac{3a}{7b}$ | D. | $\frac{3ac}{7b}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (-5-a)(a-5) | B. | (-2a+3b)(3b+2a) | C. | (a+b+c)(a-b+c) | D. | (a-b-c)(-a+b+c) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (-14)-(+5)=-9 | B. | 0-(-3)=0+(-3) | C. | (-3)×(-3)=-6 | D. | (-18)÷(-$\frac{2}{3}$)=27 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com