如圖,四邊形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,G是CD與EF的交點.
(1)求證:△BCF≌△DCE;
(2)若BC=5,CF=3,∠BFC=90°,求DG:GC的值.
(1)證明:∵四邊形ABCD是正方形,
∴∠BCF+∠FCD=90°,BC=CD.
∵△ECF是等腰直角三角形,CF=CE,
∴∠ECD+∠FCD=90°.
∴∠BCF=∠ECD.
∴△BCF≌△DCE.(3分)

(2)在△BFC中,BC=5,CF=3,∠BFC=90°,
∴BF=
BC2-CF2
=
52-32
=4

∵△BCF≌△DCE,
∴DE=BF=4,∠BFC=∠DEC=∠FCE=90°.(4分)
∴DEFC.
∴△DGE△CGF.(5分)
∴DG:GC=DE:CF=4:3.(6分)
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在正方形ABCD中,E是正方形內(nèi)一點,F(xiàn)是正方形外一點,且∠EDC=∠FBC,EC⊥CF.
(1)求證:EC=FC;
(2)當BE:CE=1:2,∠BEC=135°時,求tan∠FBE的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在正方形ABCD中,點E、F分別在CD、BC上,且BF=CE,連結BE、AF相交于點G,則下列結論:①BE=AF;②∠DAF=∠BEC;③∠AFB+∠BEC=90°;④AF⊥BE中正確的有( 。
A.①②③B.②③④C.①②③④D.①②④

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知正方形ABCD的邊長是2,E是AB的中點,延長BC到點F使CF=AE.
(1)若把△ADE繞點D旋轉(zhuǎn)一定的角度時,能否與△CDF重合?請說明理由.
(2)現(xiàn)把△DCF向左平移,使DC與AB重合,得△ABH,AH交ED于點G.求證:AH⊥ED,并求AG的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,設正方形ABCD的邊長為2,以對角線AC為邊作第二個正方形ACEF,再以對角線AE為邊作第三個正方形AEGH,如此下去…,根據(jù)以上規(guī)律寫出的表達式:an=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,點E是正方形ABCD對角線AC上一點,AF⊥BE于點F,交BD于點G,則下述結論中不成立的是( 。
A.AG=BEB.△ABG≌△BCEC.AE=DGD.∠AGD=∠DAG

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在正方形ABCD中,AC、BD交于點O,OE⊥DC于點E,若OE=2cm,則正方形ABCD的面積為______cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,G是CD與EF的交點.
(1)求證:△BCF≌△DCE;
(2)求證:BF=DE,BF⊥DE;
(3)若BC=5,CF=3,∠BFC=90°,求DG:GC的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知正方形ABCD和正方形CGEF(CG>BC),B、C、G在同一直線上,M為線段AE的中點,試問:線段MD與線段MF的大小關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案