【小題1】如圖①,一張三角形ABC紙片,點(diǎn)D、E分別是△ABC邊上兩點(diǎn).
研究(1):如果沿直線DE折疊,使A點(diǎn)落在CE上,則∠BDA′與∠A的數(shù)量關(guān)系是___________
∠BDA′=2∠A
∠BDA′+∠CEA′=2∠A
【小題2】如果折成圖②的形狀,猜想∠BDA′、∠CEA和∠A的數(shù)量關(guān)系是___________
【小題3】如果折成圖③的形狀,猜想∠BDA′、∠CEA′和∠A的數(shù)量關(guān)系,并說明理由.
猜想:________
【小題4】將問題1推廣,如圖,將四邊形ABCD紙片沿EF折疊,使點(diǎn)A、B落在四邊形EFCD的內(nèi)部時(shí),∠1+∠2與∠A、∠B之間的數(shù)量關(guān)系是_________


【小題1】∠BDA′=2∠A
【小題2】∠BDA′+∠CEA′=2∠A
【小題3】∠BDA-∠CEA=2∠A
【小題4】∠1+∠2=2(∠A+∠B)-360°

解析解:①根據(jù)折疊的性質(zhì)可知∠DA′E=∠A,∠DA′E+∠A=∠BDA′,故∠BDA′=2∠A;
②由圖形折疊的性質(zhì)可知,∠CEA′=180°-2∠DEA′…①,∠BDA′=180°-2∠A′DE…②,
①+②得,∠BDA′+∠CEA′=360°-2(∠DEA′+∠A′DE
即∠BDA′+∠CEA′=360°-2(180°-∠A),
故∠BDA′+∠CEA′=2∠A;
③∠BDA′-∠CEA′=2∠A.
證明如下:
連接AA′構(gòu)造等腰三角形,
∠BDA′=2∠DA'A,∠CEA'=2∠EA'A,
得∠BDA'-∠CEA'=2∠A,
④由圖形折疊的性質(zhì)可知∠1=180°-2∠AEF,∠2=180°-2∠BFE,
兩式相加得,∠1+∠2=360°-2(∠AEF+∠BFE)
即∠1+∠2=360°-2(360°-∠A-∠B),
即∠1+∠2=2(∠A+∠B)-360°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

類比學(xué)習(xí):一動(dòng)點(diǎn)沿著數(shù)軸向右平移3個(gè)單位,再向左平移2個(gè)單位,相當(dāng)于向右平移1個(gè)單位.用實(shí)數(shù)加法表示為 3+()=1.
  若坐標(biāo)平面上的點(diǎn)作如下平移:沿x軸方向平移的數(shù)量為a(向右為正,向左為負(fù),平移個(gè)單位),沿y軸方向平移的數(shù)量為b(向上為正,向下為負(fù),平移個(gè)單位),則把有序數(shù)對{a,b}叫做這一平移的“平移量”;“平移量”{a,b}與“平移量”{c,d}的加法運(yùn)算法則為
解決問題:
【小題1】計(jì)算:{3,1}+{1,2};{1,2}+{3,1}.
【小題2】①動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),先按照“平移量”{3,1}平移到A,再按照“平移量”{1,2}平移到B;若先把動(dòng)點(diǎn)P按照“平移量”{1,2}平移到C,再按照“平移量”{3,1}平移,最后的位置還是點(diǎn)B嗎? 在圖1中畫出四邊形OABC.
②證明四邊形OABC是平行四邊形.
【小題3】如圖2,一艘船從碼頭O出發(fā),先航行到湖心島碼頭P(2,3),再從碼頭P航行到碼頭Q(5,2),最后回到出發(fā)點(diǎn)O. 請用“平移量”加法算式表示它的航行過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆江西省新余市中考模擬考試數(shù)學(xué)試卷(帶解析) 題型:解答題

已知:如圖(1),△OAB是邊長為2的等邊三角形,0A在x軸上,點(diǎn)B在第一象限內(nèi);△OCA是一個(gè)等腰三角形,OC=AC,頂點(diǎn)C在第四象限,∠C=120°.現(xiàn)有兩動(dòng)點(diǎn)P、Q分別從A、O兩點(diǎn)同時(shí)出發(fā),點(diǎn)Q以每秒1個(gè)單位的速度沿OC向點(diǎn)C運(yùn)動(dòng),點(diǎn)P以每秒3個(gè)單位的速度沿A→O→B運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨即停止.
【小題1】求在運(yùn)動(dòng)過程中形成的△OPQ的面積S與運(yùn)動(dòng)的時(shí)間t之間的函數(shù)關(guān)系,并寫出自變量t的取值范圍;
【小題2】在OA上(點(diǎn)O、A除外)存在點(diǎn)D,使得△OCD為等腰三角形,請直接寫出所有符合條件的點(diǎn)D的坐標(biāo);
【小題3】如圖(2),現(xiàn)有∠MCN=60°,其兩邊分別與OB、AB交于點(diǎn)M、N,連接MN.將∠MCN繞著C點(diǎn)旋轉(zhuǎn)(0°<旋轉(zhuǎn)角<60°),使得M、N始終在邊OB和邊AB上.試判斷在這一過程中,△BMN的周長是否發(fā)生變化?若沒有變化,請求出其周長;若發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年人教新課標(biāo)版中考綜合模擬數(shù)學(xué)卷(11) 題型:解答題

類比學(xué)習(xí):一動(dòng)點(diǎn)沿著數(shù)軸向右平移3個(gè)單位,再向左平移2個(gè)單位,相當(dāng)于向右平移1個(gè)單位.用實(shí)數(shù)加法表示為 3+()=1.
  若坐標(biāo)平面上的點(diǎn)作如下平移:沿x軸方向平移的數(shù)量為a(向右為正,向左為負(fù),平移個(gè)單位),沿y軸方向平移的數(shù)量為b(向上為正,向下為負(fù),平移個(gè)單位),則把有序數(shù)對{a,b}叫做這一平移的“平移量”;“平移量”{a,b}與“平移量”{cd}的加法運(yùn)算法則為
解決問題:
【小題1】計(jì)算:{3,1}+{1,2};{1,2}+{3,1}.
【小題2】①動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),先按照“平移量”{3,1}平移到A,再按照“平移量”{1,2}平移到B;若先把動(dòng)點(diǎn)P按照“平移量”{1,2}平移到C,再按照“平移量”{3,1}平移,最后的位置還是點(diǎn)B嗎? 在圖1中畫出四邊形OABC.
②證明四邊形OABC是平行四邊形.
【小題3】如圖2,一艘船從碼頭O出發(fā),先航行到湖心島碼頭P(2,3),再從碼頭P航行到碼頭Q(5,2),最后回到出發(fā)點(diǎn)O. 請用“平移量”加法算式表示它的航行過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年北京市101中學(xué)下學(xué)期七年級期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

類比學(xué)習(xí):一動(dòng)點(diǎn)沿著數(shù)軸向右平移3個(gè)單位,再向左平移2個(gè)單位,相當(dāng)于向右平移1個(gè)單位。用有理數(shù)加法表示為3+(-2)=1。   若坐標(biāo)平面上的點(diǎn)做如下平移:沿x軸方向平移的數(shù)量為a(向右為正,向左為負(fù),平移個(gè)單位),沿y軸方向平移的數(shù)量為b(向上為正,向下為負(fù),平移個(gè)單位),則把有序數(shù)對{a,b}叫做這一平移的“平移量”;“平移量”{a,b}與“平移量”{c,d}的加法運(yùn)算法則為。
解決問題:
【小題1】計(jì)算:{3,1}+{1,-2};
【小題2】動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),先按照“平移量”{3,1}平移到A,再按照“平移量”
{1,2}平移到B;若先把動(dòng)點(diǎn)P按照“平移量”{1,2}平移到C,再按照“平移量”
{3,1}平移,最后的位置還是點(diǎn)B嗎? 在圖1中畫出四邊形OABC。
【小題3】如圖2,一艘船從碼頭O出發(fā),先航行到湖心島碼頭P(2,3),再從碼頭P航行到碼頭Q(5,5),最后回到出發(fā)點(diǎn)O. 請用“平移量”加法算式表示它的航行過程。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年江蘇省南京市溧水縣中考二模數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖①,將一張直角三角形紙片ABC折疊,使點(diǎn)A與點(diǎn)C重合,這時(shí)DE為折痕,△CBE為等腰三角形,再繼續(xù)將紙片沿△CBE的對稱軸EF折疊,這時(shí)得到了兩個(gè)完全重合的矩形(其中一個(gè)是原三角形的內(nèi)接矩形,另一個(gè)是拼合成的無縫隙、無重疊的矩形),我們稱這樣的兩個(gè)矩形為“疊加矩形”.請完成下列問題:

【小題1】如圖②,正方形網(wǎng)格中的△ABC能折疊成“疊加矩形”嗎?如能,請?jiān)趫D②中畫出折痕;
【小題2】如圖③,在正方形網(wǎng)格中,以給定的BC為一邊,畫出一個(gè)斜△ABC,使其頂點(diǎn)A在格點(diǎn)上,且△ABC折成的“疊加矩形”為正方形;
【小題3】如果一個(gè)三角形所折成的“疊加矩形” 為正方形,那么它必須滿足的條件是  

查看答案和解析>>

同步練習(xí)冊答案