(2013•遵義)如圖,OC是⊙O的半徑,AB是弦,且OC⊥AB,點P在⊙O上,∠APC=26°,則∠BOC=
52
52

度.
分析:由OC是⊙O的半徑,AB是弦,且OC⊥AB,根據(jù)垂徑定理的即可求得:
AC
=
BC
,又由圓周角定理,即可求得答案.
解答:解:∵OC是⊙O的半徑,AB是弦,且OC⊥AB,
AC
=
BC

∴∠BOC=2∠APC=2×26°=52°.
故答案為:52.
點評:此題考查了垂徑定理與圓周角定理.此題比較簡單,注意掌握數(shù)形結(jié)合思想的應用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•遵義)如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.動點M,N從點C同時出發(fā),均以每秒1cm的速度分別沿CA、CB向終點A,B移動,同時動點P從點B出發(fā),以每秒2cm的速度沿BA向終點A移動,連接PM,PN,設(shè)移動時間為t(單位:秒,0<t<2.5).
(1)當t為何值時,以A,P,M為頂點的三角形與△ABC相似?
(2)是否存在某一時刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•遵義)如圖,直線l1∥l2,若∠1=140°,∠2=70°,則∠3的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•遵義)如圖,在4×4正方形網(wǎng)格中,任選取一個白色的小正方形并涂紅,使圖中紅色部分的圖形構(gòu)成一個軸對稱圖形的概率是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•遵義)如圖,將一張矩形紙片ABCD沿直線MN折疊,使點C落在點A處,點D落在點E處,直線MN交BC于點M,交AD于點N.
(1)求證:CM=CN;
(2)若△CMN的面積與△CDN的面積比為3:1,求
MNDN
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•遵義)如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為(4,-
23
),且與y軸交于點C(0,2),與x軸交于A,B兩點(點A在點B的左邊).
(1)求拋物線的解析式及A,B兩點的坐標;
(2)在(1)中拋物線的對稱軸l上是否存在一點P,使AP+CP的值最?若存在,求AP+CP的最小值,若不存在,請說明理由;
(3)以AB為直徑的⊙M相切于點E,CE交x軸于點D,求直線CE的解析式.

查看答案和解析>>

同步練習冊答案