【題目】如圖,已知點A、B、C在同一直線上,△ABD和△BCE都是等邊三角形.則在下列結論中:①AP=DQ,②EP=EC,③PQ=PB,④∠AOB=∠BOC=∠COE.正確的結論是 (填寫序號).
【答案】①③④.
【解析】
試題分析:易證△ABE≌△DBC,則有∠BAE=∠BDC,從而可證到△ABP≌△DBQ,則有AP=DQ,BP=BQ,由∠PBQ=60°可得△BPQ是等邊三角形,則有PQ=PB.∠BPQ=60°,從而可得∠EPB>∠EBP,即可得到EB>EP,即EC>EP,由△ABE≌△DBC可得S△ABE=S△DBC,AE=DC,從而可得點B到AE、DC的距離相等,因而點B在∠AOC的角平分線上,即可得到∠AOB=∠BOC=∠COE=60°.
解:∵△ABD和△BCE都是等邊三角形,
∴BD=BA=AD,BE=BC=EC,∠ABD=∠CBE=60°,
∵點A、B、C在同一直線上,
∴∠DBE=180°﹣60°﹣60°=60°,
∴∠ABE=∠DBC=120°.
在△ABE和△DBC中,
,
∴△ABE≌△DBC,
∴∠BAE=∠BDC.
在△ABP和△DBQ中,
,
∴△ABP≌△DBQ,
∴AP=DQ,BP=BQ.
∴①正確.
∵∠PBQ=60°,
∴△BPQ是等邊三角形,
∴PQ=PB.∠BPQ=60°.
∴③正確.
∵∠EPB>∠BPQ,∠BPQ=∠EBP=60°,
∴∠EPB>∠EBP,
∴EB>EP,
∴EC>EP,
∴②不正確.
∵∠DPA=∠PDO+∠DOP,∠DPA=∠PAB+∠ABP,∠PDO=∠PAB,
∴∠DOP=∠ABP=60°,
∴∠COE=60°,∠AOC=120°.
∵△ABE≌△DBC,
∴S△ABE=S△DBC,AE=DC,
∴點B到AE、DC的距離相等,
∴點B在∠AOC的角平分線上,
∴∠AOB=∠BOC=∠AOC=60°,
∴∠AOB=∠BOC=∠COE=60°.
∴④正確.
故答案為①③④.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:
方法準備:
我們都知道:如圖1,在四邊形ABCD中,AD∥BC,∠B=90°,若AD=a,BC=b,AB=c,那么四邊形ABCD的面積S=.
如圖2,在四邊形ABCD中,兩條對角線AC⊥BD,垂足為O,則四邊形ABCD的面積=AC×OD+AC×OB=AC×(OD+OB)=AC×BD.
解決問題:
(1)我們以a、b 為直角邊,c為斜邊作兩個全等的直角△ABE與△FCD,再拼成如圖3所示的圖形,使B,E,F,C四點在一條直線上(此時E,F重合),可知△ABE≌△FCD,AE⊥DF. 請你證明:a2+b2=c2.
(2)固定△FCD,再將△ABE沿著BC平移到如圖4所示的位置(此時B,F重合),請你繼續(xù)證明:a2+b2=c2.
(3)當△ABE平移到如圖5的位置,結論a2+b2=c2還成立嗎?如果成立,請寫出證明過程;如果不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從n邊形的一個頂點作對角線,把這個n邊形分成三角形的個數(shù)是( )
A.n個 B.(n-1)個 C.(n-2)個 D.(n-3)個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,D點在BC上,現(xiàn)有下列四個命題:
①若AB=AC,則∠B=∠C;
②若AB=AC,∠1=∠2,則AD⊥BC,BD=DC;
③若AB=AC,BD=CD,則AD⊥BC,∠1=∠2;
④若AB=AC,AD⊥BC,則BD=BC,∠1=∠2.
其中正確的有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列語句中,真命題有( )個
①在同一平面內(nèi),過一點有且只有一條直線與已知直線平行;
②相等的角是對頂角;
③若兩個角有公共頂點且有一條公共邊,和等于平角,則這兩個角為鄰補角;
④平方根和立方根相等的數(shù)是0;
⑤平移變換中,各組對應點連成的線段平行且相等.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一種實驗用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時間t(分)滿足反比例函數(shù)關系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分,求:
(1)二次函數(shù)和反比例函數(shù)的關系式.
(2)彈珠在軌道上行駛的最大速度.
(3)求彈珠離開軌道時的速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列條件中,不能判定△ABC是等腰三角形的是( )
A.a(chǎn)=3,b=3,c=4 B.a(chǎn)︰b︰c=2︰3︰4
C.∠B=50°,∠C=80° D.∠A︰∠B︰∠C=1︰1︰2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com