(2006•巴中)如圖,C是⊙O上一點,O是圓心,若∠C=35°,則∠AOB的度數(shù)為( )

A.35°
B.70°
C.105°
D.150°
【答案】分析:直接根據(jù)圓周角定理進行求解即可.
解答:解:根據(jù)圓周角定理,可得:∠O=2∠C=70°.故選B.
點評:本題主要考查了圓周角定理的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2006•巴中)如圖,在平面直角坐標(biāo)系中,以點0′(-2,-3)為圓心,5為半徑的圓交x軸于A、B兩點,過點B作⊙O′的切線,交y軸于點C,過點0′作x軸的垂線MN,垂足為D,一條拋物線(對稱軸與y軸平行)經(jīng)過A、B兩點,且頂點在直線BC上.
(1)求直線BC的解析式;
(2)求拋物線的解析式;
(3)設(shè)拋物線與y軸交于點P,在拋物線上是否存在一點Q,使四邊形DBPQ為平行四邊形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•巴中)如圖,在平面直角坐標(biāo)系中,以點0′(-2,-3)為圓心,5為半徑的圓交x軸于A、B兩點,過點B作⊙O′的切線,交y軸于點C,過點0′作x軸的垂線MN,垂足為D,一條拋物線(對稱軸與y軸平行)經(jīng)過A、B兩點,且頂點在直線BC上.
(1)求直線BC的解析式;
(2)求拋物線的解析式;
(3)設(shè)拋物線與y軸交于點P,在拋物線上是否存在一點Q,使四邊形DBPQ為平行四邊形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年四川省巴中市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•巴中)如圖,在平面直角坐標(biāo)系中,以點0′(-2,-3)為圓心,5為半徑的圓交x軸于A、B兩點,過點B作⊙O′的切線,交y軸于點C,過點0′作x軸的垂線MN,垂足為D,一條拋物線(對稱軸與y軸平行)經(jīng)過A、B兩點,且頂點在直線BC上.
(1)求直線BC的解析式;
(2)求拋物線的解析式;
(3)設(shè)拋物線與y軸交于點P,在拋物線上是否存在一點Q,使四邊形DBPQ為平行四邊形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年山東省煙臺市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•巴中)如圖,在平面直角坐標(biāo)系中,以點0′(-2,-3)為圓心,5為半徑的圓交x軸于A、B兩點,過點B作⊙O′的切線,交y軸于點C,過點0′作x軸的垂線MN,垂足為D,一條拋物線(對稱軸與y軸平行)經(jīng)過A、B兩點,且頂點在直線BC上.
(1)求直線BC的解析式;
(2)求拋物線的解析式;
(3)設(shè)拋物線與y軸交于點P,在拋物線上是否存在一點Q,使四邊形DBPQ為平行四邊形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《四邊形》(09)(解析版) 題型:解答題

(2006•巴中)如圖,梯形ABCD中,AB∥DC,∠B=90°,E為BC上一點,且AE⊥ED.若BC=12,DC=7,BE:EC=1:2,求AB的長.

查看答案和解析>>

同步練習(xí)冊答案