已知∠ABC=∠DAB=90°,AD+BC=CE,EAB的中點(diǎn),求證:∠DEC=90.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC和△DEF中
AB=DC(已知)
BC=DA(已知)
(     )=(     )(     )

(括號中應(yīng)依次填上:
 
,
 
 
),
∴△ABC≌△DEF(
 
).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知正方形ABCD和正方形AEFG有公共頂點(diǎn)A,將正方形AEFG繞點(diǎn)A旋轉(zhuǎn).
精英家教網(wǎng)
(1)發(fā)現(xiàn):當(dāng)E點(diǎn)旋轉(zhuǎn)到DA的延長線上時(shí)(如圖1),△ABE與△ADG的面積關(guān)系是:
 

(2)引申:當(dāng)正方形AEFG旋轉(zhuǎn)任意一個(gè)角度時(shí)(如圖2),△ABE與△ADG的面積關(guān)系是:
 
.并證明你的結(jié)論.
(3)運(yùn)用:已知△ABC,AB=5cm,BC=3cm,分別以AB、BC、CA為邊向外作正方形(如圖3),則圖中陰影部分的面積和的最大值是
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、如圖,已知△ABC中,AB=3,AC=4,∠ABC=118°,那么△ABC沿著直線AC翻折,它就和△ADC重合,那么這兩個(gè)三角形
全等
,即
△ABC≌△ADC
,所以DA=
3
,∠ADC=
118
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探索:在圖1至圖3中,已知△ABC的面積為a,
(1)如圖1,延長△ABC的邊BC到點(diǎn)D,使CD=BC,連接DA.若△ACD的面積為S1,則S1=
a
a
(用含a的代數(shù)式表示)
(2)如圖2,延長△ABC的邊BC到點(diǎn)D,延長邊CA到點(diǎn)E,使CD=BC,AE=CA,連接DE.若△DEC的面積為S2,則S2=
2a
2a
(用含a的代數(shù)式表示)
(3)在圖2的基礎(chǔ)上延長AB到點(diǎn)F,使BF=AB,連接FD,F(xiàn)E,得到△DEF(如圖3).若陰影部分的面積為S3,則S3=
6a
6a
(用含a的代數(shù)式表示),并運(yùn)用上述(2)的結(jié)論寫出理由.
發(fā)現(xiàn):像上面那樣,將△ABC各邊均順次延長一倍,連接所得端點(diǎn),得到△DEF(如圖3),此時(shí),我們稱△ABC向外擴(kuò)展了一次.可以發(fā)現(xiàn),擴(kuò)展一次后得到的△DEF的面積是原來△ABC面積的
7
7
倍.
應(yīng)用:要在一塊足夠大的空地上栽種花卉,工程人員進(jìn)行了如下的圖案設(shè)計(jì):首先在△ABC的空地上種紅花,然后將△ABC向外擴(kuò)展三次(圖4已給出了前兩次擴(kuò)展的圖案).在第一次擴(kuò)展區(qū)域內(nèi)種謊話,第二次擴(kuò)展區(qū)域內(nèi)種紫花,第三次擴(kuò)展區(qū)域內(nèi)種藍(lán)花.如果種紅花的區(qū)域(即△ABC)的面積是10平方米,請你運(yùn)用上述結(jié)論求出:
(1)種紫花的區(qū)域的面積;
(2)種藍(lán)花的區(qū)域的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC和△ABD均為等腰直角三角形,∠ACB=∠BAD=90°,點(diǎn)P為邊AC上任意一點(diǎn)(點(diǎn)P不與A、C兩點(diǎn)重合),作PE⊥PB交AD于點(diǎn)E,交AB于點(diǎn)F.
(1)求證:∠AEP=∠ABP.
(2)猜想線段PB、PE的數(shù)量關(guān)系,并證明你的猜想.
(3)若P為AC延長線上任意一點(diǎn)(如圖②),PE交DA的延長線于點(diǎn)E,其他條件不變,(2)中的結(jié)論是否成立?請證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案