12、如圖,AB∥CD,∠B=42°,∠2=35°,則∠1=
42
度,∠A=
35
度,∠ACB=
103
度,∠BCD=
138
度.
分析:根據(jù)平行線的性質可求出∠1,∠A的度數(shù),根據(jù)三角形內(nèi)角和定理即可求出∠ACB的度數(shù),再利用角的和差關系求出∠BCD.
解答:解:∵AB∥CD,∠B=42°,∴∠1=∠B=42°,∠A=∠2=35°;
在△ABC中,∠B=42°,∠A=35°,∴∠ACB=180°-∠1-∠2=180°-42°-35°=103°;
∠BCD=∠ACB+∠2=103°+35°=138°.
點評:本題考查的是平行線的性質及三角形的內(nèi)角和定理,比較簡單.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

23、如圖,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中點.求證:CE⊥BE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB∥CD,AD與BC相交于點E,如果AB=2,CD=6,AE=1,那么DE=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、如圖,AB∥CD,∠C=80°,∠CAD=60°,則∠BAD的度數(shù)等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

34、如圖,AB∥CD,P是BC上的一個動點,設∠CDP=∠1,∠CPD=∠2,請你猜想出∠1、∠2與∠B之間的關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB∥CD,∠1=58°,則∠2的度數(shù)是( 。

查看答案和解析>>

同步練習冊答案