【題目】如圖,已知直線x軸交于點(diǎn)C,與y軸交于點(diǎn)B,拋物線經(jīng)過B、C兩點(diǎn).

1)求拋物線的解析式;

2)如圖,點(diǎn)E是直線BC上方拋物線上的一動(dòng)點(diǎn),當(dāng)面積最大時(shí),請求出點(diǎn)E的坐標(biāo);

3)在(2)的結(jié)論下,過點(diǎn)Ey軸的平行線交直線BC于點(diǎn)M,連接AM,點(diǎn)Q是拋物線對稱軸上的動(dòng)點(diǎn),在拋物線上是否存在點(diǎn)P,使得以PQ、AM為頂點(diǎn)的四邊形是平行四邊形?如果存在,請直接寫出點(diǎn)P的坐標(biāo);如果不存在,請說明理由.

【答案】(1);(2)當(dāng)時(shí),有最大值,此時(shí);(3)

【解析】

(1)要求拋物線的解析式,先根據(jù)一次函數(shù)求點(diǎn)B和點(diǎn)C的坐標(biāo),再利用待定系數(shù)法求出二次函數(shù)的解析式;(2)要求當(dāng)面積最大時(shí),點(diǎn)E的坐標(biāo),首先過點(diǎn)E軸,交直線BC于點(diǎn)G,設(shè)出點(diǎn)E的坐標(biāo),表示出點(diǎn)G的坐標(biāo),然后表示出EG的長,利用三角形面積公式及二次函數(shù)的最值即可得出點(diǎn)E的坐標(biāo);(3)要求使得以PQ、AM為頂點(diǎn)的四邊形是平行四邊形的點(diǎn)P的坐標(biāo),分三種情況:①以AM為邊時(shí),四邊形AMQP是平行四邊形;②以AM為邊,四邊形AMPQ是平行四邊形;③以AM為對角線時(shí),四邊形APMQ是平行四邊形,根據(jù)平行四邊形的特征,即可求出點(diǎn)P的坐標(biāo).

解:(1)當(dāng)時(shí),,∴,當(dāng)時(shí),,解得,∴

代入拋物線中得:解得

∴拋物線的解析式為;

2)如解圖①,過點(diǎn)E軸,交直線BC于點(diǎn)G

圖①

設(shè),則,

,

,∵

∴當(dāng)時(shí),有最大值,∴此時(shí);

3)存在,點(diǎn)P的坐標(biāo)是

[解法提示]

對稱軸是直線,∴,

∵點(diǎn)Q是拋物線對稱軸上的動(dòng)點(diǎn),∴點(diǎn)Q的橫坐標(biāo)為,

在拋物線上存在點(diǎn)P,使得以P、QA、M為頂點(diǎn)的四邊形是平行四邊形;

①如解圖②,以AM為邊時(shí),四邊形AMQP是平行四邊形,由(2)可得點(diǎn)M的橫坐標(biāo)是3,

∵點(diǎn)M在直線上,∴點(diǎn)M的坐標(biāo)是,又∵點(diǎn)A的坐標(biāo)是,點(diǎn)Q的橫坐標(biāo)為,根據(jù)點(diǎn)M到點(diǎn)Q的平移規(guī)律可知點(diǎn)P的橫坐標(biāo)為,∴;

②如解圖③,以AM為邊時(shí),四邊形AMPQ是平行四邊形,

由(2)可得點(diǎn)M的橫坐標(biāo)是3,

,且點(diǎn)Q的橫坐標(biāo)為,

根據(jù)點(diǎn)A到點(diǎn)Q的平移規(guī)律可知點(diǎn)P的橫坐標(biāo)為,∴;

圖② 圖③

③如解圖④,以AM為對角線時(shí),四邊形APMQ是平行四邊形,根據(jù)點(diǎn)M到點(diǎn)Q的平移規(guī)律可得點(diǎn)P到點(diǎn)A的平移規(guī)律可知點(diǎn)P的橫坐標(biāo)為,∴;

圖④

綜上所述,在拋物線上存在點(diǎn)P,使得以PQ、A、M為頂點(diǎn)的四邊形是平行四邊形,點(diǎn)P的坐標(biāo)是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于二次函數(shù)y=﹣(xm2m+1m為常數(shù)),下列描述錯(cuò)誤的是( 。

A.當(dāng)m2時(shí),函數(shù)的最大值是﹣1

B.函數(shù)圖象的頂點(diǎn)始終在直線y=﹣x+1的圖象上

C.當(dāng)﹣1x2時(shí),yx的增大而增大,則m的取值范圍為m≤2

D.當(dāng)m0時(shí),函數(shù)圖象的頂點(diǎn)及函數(shù)圖象與x軸的兩個(gè)交點(diǎn)構(gòu)成的三角形是等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABC中,∠ACB =90°,∠CAB= 30°ABD是等邊三角形. 如圖2,將四邊形ACBD折疊,使DC重合,EF為折痕,則∠ACE的正弦值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)產(chǎn)品公司以元的成本收購了某種農(nóng)產(chǎn)品噸,目前可以以/噸的價(jià)格直接售出.而該公司對這批農(nóng)產(chǎn)品有以下兩種處理方式可供選擇:

方式一:公司可將部分農(nóng)產(chǎn)品直接以/噸的價(jià)格售出,剩下的全部加工成半成品出售(加工成本忽略不計(jì)),每噸該農(nóng)產(chǎn)品可以加工得到噸的半成品,每噸半成品的售價(jià)為.

方式二:公司將該批農(nóng)產(chǎn)品全部儲(chǔ)藏起來,這樣每星期會(huì)損失噸,且每星期需支付各種費(fèi)用元,但同時(shí)每星期每噸的價(jià)格將上漲.

1)若該公司選取方式一處理該批農(nóng)產(chǎn)品,最終獲得了的利潤率,求該公司直接銷售了多少噸農(nóng)產(chǎn)品?

2)若該公司選取方式二處理該批農(nóng)產(chǎn)品,最終獲利1元,求該批農(nóng)產(chǎn)品儲(chǔ)藏了多少個(gè)星期才出售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市正在開展食品安全城市創(chuàng)建活動(dòng),為了解學(xué)生對食品安全知識(shí)的了解情況,學(xué)校隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果按照“A非常了解、B了解、C了解較少、D不了解四類分別進(jìn)行統(tǒng)計(jì),并繪制了下列兩幅統(tǒng)計(jì)圖(不完整).請根據(jù)圖中信息,解答下列問題:

(1)此次共調(diào)查了   名學(xué)生;

(2)扇形統(tǒng)計(jì)圖中D所在扇形的圓心角為   

(3)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;

(4)若該校共有800名學(xué)生,請你估計(jì)對食品安全知識(shí)非常了解的學(xué)生的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點(diǎn)為二次函數(shù)圖象的頂點(diǎn),直線分別交軸的負(fù)半軸和軸于點(diǎn),點(diǎn)

(1)若二次函數(shù)圖象經(jīng)過點(diǎn),求二次函數(shù)的解析式.

(2)如圖,若點(diǎn)坐標(biāo)為,且點(diǎn)內(nèi)部(不包含邊界)

①求的取值范圍;

②若點(diǎn),都在二次函數(shù)圖象上,試比較的大小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前,我國的空氣質(zhì)量得到了大幅度的提高.現(xiàn)隨機(jī)調(diào)查了某城市1個(gè)月的空氣質(zhì)量情況,并將監(jiān)測的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計(jì)圖.

請根據(jù)圖中提供的信息,解答下面的問題:

1)本次調(diào)查中,一共調(diào)查的天數(shù)為_______天;扇形圖中,表示輕度污染的扇形的圓心角為______度;

2)將條形圖補(bǔ)充完整;

3)估計(jì)該城市一年(以365天計(jì)算)中,空氣質(zhì)量未達(dá)到優(yōu)的天數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】扶貧工作小組對果農(nóng)進(jìn)行精準(zhǔn)扶貧,幫助果農(nóng)將一種有機(jī)生態(tài)水果拓寬了市場.與去年相比,今年這種水果的產(chǎn)量增加了1000千克,每千克的平均批發(fā)價(jià)比去年降低了1元,批發(fā)銷售總額比去年增加了

1)已知去年這種水果批發(fā)銷售總額為10萬元,求這種水果今年每千克的平均批發(fā)價(jià)是多少元?

2)某水果店從果農(nóng)處直接批發(fā),專營這種水果.調(diào)查發(fā)現(xiàn),若每千克的平均銷售價(jià)為41元,則每天可售出300千克;若每千克的平均銷售價(jià)每降低3元,每天可多賣出180千克,設(shè)水果店一天的利潤為元,當(dāng)每千克的平均銷售價(jià)為多少元時(shí),該水果店一天的利潤最大,最大利潤是多少?(利潤計(jì)算時(shí),其它費(fèi)用忽略不計(jì).)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)決定在學(xué)生中開展丟沙包、打籃球、跳大繩和踢毽球四種項(xiàng)目的活動(dòng),為了解學(xué)生對四種項(xiàng)目的喜歡情況,隨機(jī)調(diào)查了該校m名學(xué)生最喜歡的一種項(xiàng)目(每名學(xué)生必選且只能選擇四種活動(dòng)項(xiàng)目的一種),并將調(diào)查結(jié)果繪制成如下的不完整的統(tǒng)計(jì)圖表:

學(xué)生最喜歡的活動(dòng)項(xiàng)目的人數(shù)統(tǒng)計(jì)表

項(xiàng)目

學(xué)生數(shù)(名)

百分比

丟沙包

20

10%

打籃球

60

p%

跳大繩

n

40%

踢毽球

40

20%

根據(jù)圖表中提供的信息,解答下列問題:

(1)m= ,n= ,p=

(2)請根據(jù)以上信息直接補(bǔ)全條形統(tǒng)計(jì)圖;

(3)根據(jù)抽樣調(diào)查結(jié)果,請你估計(jì)該校2000名學(xué)生中有多少名學(xué)生最喜歡跳大繩.

查看答案和解析>>

同步練習(xí)冊答案