年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(知識鏈接)連結(jié)三角形兩邊中點(diǎn)的線段,叫做三角形的中位線.
(動手操作)小明同學(xué)在探究證明中位線性質(zhì)定理時,是沿著中位線將三角形剪開然后將它們無縫隙、無重疊的拼在一起構(gòu)成平行四邊形,從而得出:三角形中位線平行于第三邊且等于第三邊的一半.
(性質(zhì)證明)小明為證明定理,他想利用三角形全等、平行四邊形的性質(zhì)來證明.請你幫他完成解題過程(要求:畫出圖形,根據(jù)圖形寫出已知、求證和證明過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=ax+bx+4與x軸交于點(diǎn)A(-3,0)和B(2,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)如圖1,若點(diǎn)D為CB的中點(diǎn),將線段DB繞點(diǎn)D旋轉(zhuǎn),點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)G,當(dāng)點(diǎn)G恰好落在拋物線的對稱軸上時,求點(diǎn)G的坐標(biāo);
(3)如圖2,若點(diǎn)D為直線BC或直線AC上的一點(diǎn),E為x軸上一動點(diǎn),拋物線y=ax+bx+4對稱軸上是否存在點(diǎn)F,使以B,D,F(xiàn),E為頂點(diǎn)的四邊形為菱形?若存在,請求出點(diǎn)F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平形行四邊形ABCD中,連接對角線BD,AB=BD,E為線段AD上一點(diǎn),AE=BE
(1)如圖1,若∠ABE=30,CD=,求DE的長;
(2)如圖2,F(xiàn)為線段BE上一點(diǎn),DE=BF,連接AF、DF,DF的延長線交AB于點(diǎn)G,若AF=2DE,求證:DF=2GF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C、P是上兩點(diǎn),AB=13,AC=5,
(1)如圖(1),若點(diǎn)P是的中點(diǎn),求PA的長;
(2)如圖(2),若點(diǎn)P是的中點(diǎn),求PA得長 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論: ①a+b+c<0;②a–b+c<0;③b+2a<0;④abc>0,其中正確的是 (填寫正確的序號)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=2,BC=4,AC∥x軸,A、B兩點(diǎn)在反比例函數(shù)y=(x>0)的圖象上,延長CA交y軸于點(diǎn)D,AD=1.
(1)求該反比例函數(shù)的解析式;
(2)將△ABC繞點(diǎn)B順時針旋轉(zhuǎn)得到△EBF,使點(diǎn)C落在x軸上的點(diǎn)F處,點(diǎn)A的對應(yīng)點(diǎn)為E,求旋轉(zhuǎn)角的度數(shù)和點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AC、BD交于點(diǎn)O,BD⊥AD于點(diǎn)D,將△ABD沿BD翻折得到△EBD,連接EC、EB.
(1)求證:四邊形DBCE是矩形;
(2)若BD=4,AD=3,求點(diǎn)O到AB的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,拋物線的頂點(diǎn)D的坐標(biāo)為(1,-4),且與y軸交于點(diǎn)
C(0,3)
求該函數(shù)的關(guān)系式;
求改拋物線與x軸的交點(diǎn)A,B的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com