已知二次函數(shù)圖象的頂點(diǎn)是(-1,2),且過點(diǎn)(0,).

(1)求二次函數(shù)的表達(dá)式,并在圖中畫出它的圖象;

(2)判斷點(diǎn)(2,)是否在該二次函數(shù)圖象上;并指出當(dāng)取何值時(shí),?

 

【答案】

(1),圖象見試題解析;(2)在,

【解析】

試題分析:(1)由于二次函數(shù)圖象的頂點(diǎn)是(﹣1,2),設(shè)頂點(diǎn)式為,然后把點(diǎn)(0,)代入可求得a的值,從而確定二次函數(shù)解析式,先通過頂點(diǎn)式得到拋物線的對稱軸為直線x=﹣1,頂點(diǎn)坐標(biāo)為(﹣1,2),再確定拋物線與x軸的交點(diǎn)坐標(biāo)為(﹣3,0)和(1,0),然后畫圖;

(2)把代入二次函數(shù)的解析式,即可判斷點(diǎn)(2,)是否在該二次函數(shù)圖象上,再由圖象得到當(dāng)時(shí),

試題解析:(1)設(shè)二次函數(shù)的解析式為,把點(diǎn)(0,)代入得,解得,

所以二次函數(shù)的表達(dá)式為;

(2)∵,當(dāng)時(shí),,∴點(diǎn)(2,)在該二次函數(shù)圖象上.

∵二次函數(shù)的表達(dá)式為,∴拋物線的對稱軸為直線,令y=0,則,解得,,∴拋物線與x軸的交點(diǎn)坐標(biāo)為(﹣3,0)和(1,0),頂點(diǎn)坐標(biāo)為(﹣1,2).由圖像可知,當(dāng)時(shí),

考點(diǎn):1.待定系數(shù)法求二次函數(shù)解析式;2.二次函數(shù)的圖象;3.二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知二次函數(shù)圖象的頂點(diǎn)是(-1,2),且過點(diǎn)(0,
32
)

(1)求二次函數(shù)的表達(dá)式,并在圖中畫出它的圖象;
(2)求證:對任意實(shí)數(shù)m,點(diǎn)M(m,-m2)都不在這個(gè)二次函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)圖象的頂點(diǎn)是(-1,2),且過點(diǎn)(0,
32
)

(1)求二次函數(shù)的表達(dá)式;
(2)畫出該二次函數(shù)的圖象,并指出x為何值時(shí),y隨的x增大而增大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》?碱}集(13):2.5 用三種方式表示二次函數(shù)(解析版) 題型:解答題

已知二次函數(shù)圖象的頂點(diǎn)是(-1,2),且過點(diǎn)
(1)求二次函數(shù)的表達(dá)式,并在圖中畫出它的圖象;
(2)求證:對任意實(shí)數(shù)m,點(diǎn)M(m,-m2)都不在這個(gè)二次函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省揚(yáng)州市高郵市九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知二次函數(shù)圖象的頂點(diǎn)是(-1,2),且過點(diǎn)
(1)求二次函數(shù)的表達(dá)式,并在圖中畫出它的圖象;
(2)求證:對任意實(shí)數(shù)m,點(diǎn)M(m,-m2)都不在這個(gè)二次函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年廣東省佛山市南海實(shí)驗(yàn)中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

已知二次函數(shù)圖象的頂點(diǎn)是(-1,2),且過點(diǎn)
(1)求二次函數(shù)的表達(dá)式;
(2)畫出該二次函數(shù)的圖象,并指出x為何值時(shí),y隨的x增大而增大.

查看答案和解析>>

同步練習(xí)冊答案