【題目】已知關(guān)于x的一元二次方程x2﹣2kx+k2﹣2=0.設(shè)x1,x2是方程的根,且x12﹣2kx1+2x1x2=5,則k的值為_____.
【答案】
【解析】
先計(jì)算出一元二次方程判別式,即△=2k2+8,從而得到△>0,于是可判斷不論k為何值,方程總有兩個(gè)不相等實(shí)數(shù)根;再利用方程的解的定義得到x12-2kx1=-k2+2,根據(jù)根與系數(shù)的關(guān)系可得x1x2=k2-2,則-k2+2+2·(k2-2)=5,然后解關(guān)于k的方程即可.
(1)證明:△=(-2k)2-4(k2-2)=2k2+8>0,
所以不論k為何值,方程總有兩個(gè)不相等實(shí)數(shù)根;
(2)∵x1是方程的根,
∴x12-2kx1+k2-2=0,
∴x12-2kx1=-k2+2,
∵x12-2kx1+2x1x2=5,x1x2=k2-2,
∴-k2+2+2·(k2-2)=5,
整理得k2-14=0,
∴k=±.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2﹣x﹣與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,對(duì)稱軸與x軸交于點(diǎn)D,點(diǎn)E(4,n)在拋物線上.
(1)求直線AE的解析式;
(2)點(diǎn)P為直線CE下方拋物線上的一點(diǎn),連接PC,PE.當(dāng)△PCE的面積最大時(shí),連接CD,CB,點(diǎn)K是線段CB的中點(diǎn),點(diǎn)M是CP上的一點(diǎn),點(diǎn)N是CD上的一點(diǎn),求KM+MN+NK的最小值;
(3)點(diǎn)G是線段CE的中點(diǎn),將拋物線y=x2﹣x﹣沿x軸正方向平移得到新拋物線y′,y′經(jīng)過(guò)點(diǎn)D,y′的頂點(diǎn)為點(diǎn)F.在新拋物線y′的對(duì)稱軸上,是否存在一點(diǎn)Q,使得△FGQ為等腰三角形?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC= .對(duì)角線AC,BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交BC,AD于點(diǎn)E,F(xiàn).
(1)證明:當(dāng)旋轉(zhuǎn)角為90°時(shí),四邊形ABEF是平行四邊形;
(2)試說(shuō)明在旋轉(zhuǎn)過(guò)程中,線段AF與EC總保持相等;
(3)在旋轉(zhuǎn)過(guò)程中,四邊形BEDF可能是菱形嗎?如果不能,請(qǐng)說(shuō)明理由;如果能,說(shuō)明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為半圓O的直徑,AD、BC分別切⊙O于A,B兩點(diǎn),CD切⊙O于點(diǎn)E,AD與CD相交于D,BC與CD相交于C,連結(jié)OD、OE、OC,對(duì)于下列結(jié)論:
①AD+BC=CD;②∠DOC=90°;③S梯形ABCD=CDOA;④.
其中結(jié)論正確的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過(guò)點(diǎn)D,E是⊙O上任意一點(diǎn),且CD切⊙O于點(diǎn)D.
(1)試求∠AED的度數(shù).
(2)若⊙O的半徑為cm,試求△ADE面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的頂點(diǎn)為點(diǎn)D,并與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C.
(1)求點(diǎn)A、B、C、D的坐標(biāo);
(2)在y軸的正半軸上是否存在點(diǎn)P,使以點(diǎn)P、O、A為頂點(diǎn)的三角形與△AOC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)取點(diǎn)E(,0)和點(diǎn)F(0,),直線l經(jīng)過(guò)E、F兩點(diǎn),點(diǎn)G是線段BD的中點(diǎn).
①點(diǎn)G是否在直線l上,請(qǐng)說(shuō)明理由;
②在拋物線上是否存在點(diǎn)M,使點(diǎn)M關(guān)于直線l的對(duì)稱點(diǎn)在x軸上?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)上有一點(diǎn),點(diǎn)橫坐標(biāo)為1,過(guò)點(diǎn)的直線與、軸分別交于點(diǎn)、點(diǎn),.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)將直線沿軸方向向下平移使其過(guò)反比例函數(shù)的右支圖象上的點(diǎn),且點(diǎn)橫坐標(biāo)為,直線交軸于點(diǎn),連接、,求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)將每件進(jìn)價(jià)為80元的A商品按每件100元出售,一天可售出128件.經(jīng)過(guò)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品的銷售單價(jià)每降低1元,其日銷量可增加8件.設(shè)該商品每件降價(jià)x元,商場(chǎng)一天可通過(guò)A商品獲利潤(rùn)y元.
(1)求y與x之間的函數(shù)解析式(不必寫出自變量x的取值范圍)
(2)A商品銷售單價(jià)為多少時(shí),該商場(chǎng)每天通過(guò)A商品所獲的利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點(diǎn)C,點(diǎn)A(,1)在反比例函數(shù)y=的圖象上.
(1)求反比例函數(shù)y=的表達(dá)式;
(2)在x軸上是否存在一點(diǎn)P,使得S△AOP=S△AOB,若存在,求所有符合條件點(diǎn)P的坐標(biāo);若不存在,簡(jiǎn)述你的理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com