已知函數(shù)y=ax2+bx+c(a≠0),給出下列四個判斷:①a>0;②2a+b=0;③b2-4ac>0;④a+b+c<0.以其中三個判斷作為條件,余下一個判斷作為結論,可得到四個命題,其中,真命題的個數(shù)有( )
A.1個
B.2個
C.3個
D.4個
【答案】分析:由①a>0確定開口方向,②2a+b=0可以得到對稱軸為x=1,而由b2-4ac>0可以推出頂點在第四象限,所以可以判定④是否正確;
由①a>0確定開口方向,②2a+b=0可以得到對稱軸為x=1,而④a+b+c<0可以得到頂點在第四象限,所以可以判定③是否正確;
由①a>確定開口方向0,③b2-4ac>0,④a+b+c<0可以得到頂點在第三、四象限,所以可以判定②錯誤;
由②2a+b=0得到對稱軸為x=1,而③b2-4ac>0可以得到與x軸有兩個交點,由④a+b+c<0可以得到頂點在第四象限,由此可以判定①是否正確.
解答:解:(1)∵①a>0,
∴開口向上,
∵②2a+b=0,
∴對稱軸為x=1,
∵③b2-4ac>0,
∴頂點在第四象限,
∴④a+b+c<0正確;
(2)∵①a>0,
∴開口向上,
∵②2a+b=0,
∴對稱軸為x=1,
∵④a+b+c<0,
∴頂點在第四象限,
∴③b2-4ac>0正確;
(3)∵①a>0,
∴開口向上,
∵③b2-4ac>0,④a+b+c<0,
∴頂點在第三、四象限,
∴②2a+b=0錯誤;
(4)∵②2a+b=0,
∴對稱軸為x=1,
∵③b2-4ac>0,④a+b+c<0,
∴頂點在第四象限,
∴與x軸有兩個交點,
∴①a>0正確.
故選C.
點評:考查二次函數(shù)y=ax2+bx+c系數(shù)符號的確定①2個交點,b2-4ac>0;