已知如圖所示是一幾何體的三視圖。
(1)這是哪種幾何體?    
(2)若主視圖的長12cm,俯視圖的三角形邊長3cm,求這個幾何體的側面積。
解:(1)三棱柱  (2)108
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

37、如圖①所示,已知直線m∥n,A,B為直線n上的兩點,C,D為直線m上的兩點.
(1)寫出圖中面積相等的各對三角形
△ABC和△ABD,△AOC和△BOD,△CDA和△CDB
;
(2)如果A,B,C為三個定點,點D在m上移動,那么無論D點移動到任何位置,總有
△ABD
與△ABC的面積相等,理由是
平行線間的距離處處相等
;
解決以下問題:如圖②所示,五邊形ABCDE是張大爺十年前承包的一塊土地的示意圖,經過多年開墾荒地,現(xiàn)已變成如圖③所示的形狀,但承包土地與開墾荒地的分界小路(即圖中的折線CDE)還保留著.張大爺想過E點修一條直路,使直路左邊的土地面積與承包時的一樣多,右邊的土地面積與開墾荒地面積一樣多.請你用相關的幾何知識,按張大爺?shù)囊笤O計出修路方案.(不計分界小路與直路的占地面積)
(3)寫出設計方案,并在圖③中畫出相應的圖形;
(4)說明方案設計的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•西城區(qū)模擬)我們在幾何的學習中能發(fā)現(xiàn),很多圖形的性質定理與判定定理之間有著一定的聯(lián)系.例如:菱形的性質定理“菱形的對角線互相垂直”和菱形的判定定理“對角線互相垂直的平行四邊形是菱形”就是這樣.但是課本中對菱形的另外一個性質“菱形的對角線平分一組對角”卻沒有給出類似的判定定理,請你利用如圖所示圖形研究一下這個問題.
要求:如果有類似的判定定理,請寫出已知、求證并證明.如果沒有,請舉出反例.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖①所示,已知直線m∥n,A,B為直線n上的兩點,C,D為直線m上的兩點.
(1)寫出圖中面積相等的各對三角形______;
(2)如果A,B,C為三個定點,點D在m上移動,那么無論D點移動到任何位置,總有______與△ABC的面積相等,理由是______;
解決以下問題:

如圖②所示,五邊形ABCDE是張大爺十年前承包的一塊土地的示意圖,經過多年開墾荒地,現(xiàn)已變成如圖③所示的形狀,但承包土地與開墾荒地的分界小路(即圖中的折線CDE)還保留著.張大爺想過E點修一條直路,使直路左邊的土地面積與承包時的一樣多,右邊的土地面積與開墾荒地面積一樣多.請你用相關的幾何知識,按張大爺?shù)囊笤O計出修路方案.(不計分界小路與直路的占地面積)
(3)寫出設計方案,并在圖③中畫出相應的圖形;
(4)說明方案設計的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

我們在幾何的學習中能發(fā)現(xiàn),很多圖形的性質定理與判定定理之間有著一定的聯(lián)系.例如:菱形的性質定理“菱形的對角線互相垂直”和菱形的判定定理“對角線互相垂直的平行四邊形是菱形”就是這樣.但是課本中對菱形的另外一個性質“菱形的對角線平分一組對角”卻沒有給出類似的判定定理,請你利用如圖所示圖形研究一下這個問題.
要求:如果有類似的判定定理,請寫出已知、求證并證明.如果沒有,請舉出反例.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年北師大版九年級第二次聯(lián)考數(shù)學試卷(解析版) 題型:解答題

我們在幾何的學習中能發(fā)現(xiàn),很多圖形的性質定理與判定定理之間有著一定的聯(lián)系.例如:菱形的性質定理“菱形的對角線互相垂直”和菱形的判定定理“對角線互相垂直的平行四邊形是菱形”就是這樣.但是課本中對菱形的另外一個性質“菱形的對角線平分一組對角”卻沒有給出類似的判定定理,請你利用如圖所示圖形研究一下這個問題.
要求:如果有類似的判定定理,請寫出已知、求證并證明.如果沒有,請舉出反例.

查看答案和解析>>

同步練習冊答案