Rt△ABC中,∠C=90°,AC=3,BC=4,以C為圓心,以AC長為半徑作⊙C,則AB與⊙C的位置關(guān)系是


  1. A.
    相離
  2. B.
    相切
  3. C.
    相交
  4. D.
    無法確定
C
分析:此題首先應(yīng)求得圓心到直線的距離,根據(jù)直角三角形的面積公式即可求得;再進(jìn)一步根據(jù)這些和圓的位置關(guān)系與數(shù)量之間的聯(lián)系進(jìn)行判斷.
若d<r,則直線與圓相交;若d=r,則直線于圓相切;若d>r,則直線與圓相離.
解答:根據(jù)勾股定理求得BC=5.
∵AC=3,BC=4,
∴AB==5,S△ABC=AC×BC=×3×4=6,
∴AB上的高為:6×2÷5=2.4,
即圓心到直線的距離是2.4.
∵2.4<3,
∴直線和圓相交.
故選C.
點(diǎn)評:此題主要考查了直線與圓的位置關(guān)系,關(guān)鍵是根據(jù)三角形的面積求出斜邊上的高的長度.
注意:直角三角形斜邊上的高等于兩條直角邊的乘積除以斜邊.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足為D,交AB于點(diǎn)E.又點(diǎn)F在DE的精英家教網(wǎng)延長線上,且AF=CE.求證:四邊形ACEF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠BAC=90°,點(diǎn)D、E、F分別是三邊的中點(diǎn),且CF=3cm,則DE=
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,AC⊥BC,CD⊥AB于D,AC=8,BC=6,則AD=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰Rt△ABC中,∠C=90°,正方形DEFG的頂點(diǎn)D在邊AC上,點(diǎn)E、F在邊AB上,精英家教網(wǎng)點(diǎn)G在邊BC上.
(1)求證:AE=BF;
(2)若BC=
2
cm,求正方形DEFG的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,∠C=90°,D為AB的中點(diǎn),DE⊥AB,AB=20,AC=12,則四邊形ADEC的面積為
 

查看答案和解析>>

同步練習(xí)冊答案