5.根據(jù)下列條件分別判別以a,b,c為邊的三角形不是直角三角形的是( 。
A.a=6,b=8,c=10B.a=5k,b=12k,c=13k
C.a=5,b=7,c=8D.a=$\sqrt{7}$,b=$\sqrt{3}$,c=2

分析 根據(jù)勾股定理的逆定理:如果三角形有兩邊的平方和等于第三邊的平方,那么這個是直角三角形判定則可.如果有這種關系,這個就是直角三角形.

解答 解:A、∵62+82=102,∴該三角形符合勾股定理的逆定理,故是直角三角形,不符合題意;
B、∵(5k)2+(12k)2=(13k)2,∴該三角形符合勾股定理的逆定理,故是直角三角形,不符合題意;
C、∵52+72≠82,∴該三角形不符合勾股定理的逆定理,故不是直角三角形,符合題意;
D、∵($\sqrt{3}$)2+22=($\sqrt{7}$)2,∴該三角形符合勾股定理的逆定理,故是直角三角形,不符合題意.
故選C.

點評 本題考查了勾股定理的逆定理,在應用勾股定理的逆定理時,應先認真分析所給邊的大小關系,確定最大邊后,再驗證兩條較小邊的平方和與最大邊的平方之間的關系,進而作出判斷.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:選擇題

15.如圖,在矩形ABCD中,對角線AC、BD交于點O,∠AOB=60°,BD=8cm,則CD的長度為( 。
A.8cmB.6cmC.4cmD.2cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

16.如圖,二次函數(shù)y=ax2+bx+c的圖象如圖,則點P(a,-$\frac{c}$)在第三象限.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

13.如圖,在△ABC中,∠C=90°,AD平分∠BAC,BC=6cm,AC=8cm,則D點到AB的距離為$\frac{8}{3}$cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

20.點C,D分別是△ABO的邊AO、OB延長線上的點,AB的延長線交DC于E.
(1)如圖1,OA=OC,AB=CD,求證:DE=BE;
(2)如圖2,OA=OC,∠C=90°,AC=CD,CE=3DE,求sin∠ABO;
(3)如圖3,若BE=DE,$\frac{AO}{OC}$=$\frac{2}{3}$,AB=4,求DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

10.定義運算a⊕b=b2-a2+1,那么(5⊕4)⊕3=-54.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

17.如圖,在矩形ABCD中,AE⊥BD,垂足為E,BE=2,ED=6.求矩形ABCD的長和寬.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

14.已知函數(shù):①y=3x-1;②y=3x2-1;③y=3x2+x+$\frac{1}{x}$;④y=(x+3)2-x2;⑤y=3(x-1)2+1,其中二次函數(shù)的個數(shù)為2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

16.觀察下列等式:
$\frac{1}{1×2}$=1-$\frac{1}{2}$,$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$,$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$,
將以下三個等式兩邊分別相加得:
$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$=$\frac{3}{4}$,
(1)按以上規(guī)律直接寫出:$\frac{1}{6×7}$=$\frac{1}{6}$-$\frac{1}{7}$;
(2)按以上規(guī)律直接寫出下列式子的計算結果:
$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…$\frac{1}{2014×2015}$=$\frac{2014}{2015}$;
(3)探究并利用以上規(guī)律計算:$\frac{1}{2×4}$+$\frac{1}{4×6}$+$\frac{1}{6×8}$+…+$\frac{1}{2014×2016}$.

查看答案和解析>>

同步練習冊答案