【題目】如圖,在平面直角坐標(biāo)系中,直線AB與y軸交于點(diǎn),與反比例函數(shù)在第二象限內(nèi)的圖象相交于點(diǎn).
(1)求直線AB的解析式;
(2)將直線AB向下平移9個(gè)單位后與反比例函數(shù)的圖象交于點(diǎn)C和點(diǎn)E,與y軸交于點(diǎn)D,求的面積;
(3)設(shè)直線CD的解析式為,根據(jù)圖象直接寫出不等式的解集.
【答案】(1));(2)的面積為18;(3)或.
【解析】
(1)將點(diǎn)A(-1,a)代入反比例函數(shù)求出a的值,確定出A的坐標(biāo),再根據(jù)待定系數(shù)法確定出一次函數(shù)的解析式;
(2)根據(jù)直線的平移規(guī)律得出直線CD的解析式為y=-x-2,從而求得D的坐標(biāo),聯(lián)立方程求得交點(diǎn)C、E的坐標(biāo),根據(jù)三角形面積公式求得△CDB的面積,然后由同底等高的兩三角形面積相等可得△ACD與△CDB面積相等;
(3)根據(jù)圖象即可求得.
(1))∵點(diǎn)在反比例函數(shù)的圖象上,
∴,
∴,
∵點(diǎn),
∴設(shè)直線AB的解析式為,
∵直線AB過點(diǎn),
∴,解得,
∴直線AB的解析式為;
(2)∵將直線AB向下平移9個(gè)單位后得到直線CD的解析式為,
∴,
∴,
聯(lián)立,解得或,
∴,,
連接AC,則的面積,
由平行線間的距離處處相等可得與面積相等,
∴的面積為18.
(3)∵,,
∴不等式的解集是:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)P(n,2),與x軸交于點(diǎn)A(-4,0),與y軸交于點(diǎn)C,PB丄x軸于點(diǎn)B,點(diǎn)A與點(diǎn)B關(guān)于y軸對(duì)稱.
(1)求一次函數(shù)、反比例函數(shù)的解析式;
(2)求證:點(diǎn)C為線段AP的中點(diǎn);
(3)反比例函數(shù)圖象上是否存在點(diǎn)D,使四邊形BCPD為菱形,如果存在,說明理由并求出點(diǎn)D的坐標(biāo);如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),ABCD的邊AB在x軸上,頂點(diǎn)D在y軸的正半軸上,點(diǎn)C在第一象限,將△AOD沿y軸翻折,使點(diǎn)A落在x軸上的點(diǎn)E處,點(diǎn)B恰好為OE的中點(diǎn),DE與BC交于點(diǎn)F.若y(k≠0)圖象經(jīng)過點(diǎn)C,且S△BEF=1,則k的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,m),且與x鈾的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間,則下列結(jié)論:①abc>0;②a﹣b+c>0;③b2=4a(c﹣m);④一元二次方程ax2+bx+c=m+1有兩個(gè)不相等的實(shí)數(shù)根,其中正確結(jié)論的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10cm,BD⊥AC于點(diǎn)D,BD=8cm.點(diǎn)M從點(diǎn)A出發(fā),沿AC的方向勻速運(yùn)動(dòng),同時(shí)直線PQ由點(diǎn)B出發(fā),沿BA的方向勻速運(yùn)動(dòng),運(yùn)動(dòng)過程中始終保持PQ∥AC,直線PQ交AB于點(diǎn)P、交BC于點(diǎn)Q、交BD于點(diǎn)F.連接PM,設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t≤5).線段CM的長度記作y甲,線段BP的長度記作y乙,y甲和y乙關(guān)于時(shí)間t的函數(shù)變化情況如圖所示.
(1)由圖2可知,點(diǎn)M的運(yùn)動(dòng)速度是每秒 cm;當(dāng)t= 秒時(shí),四邊形PQCM是平行四邊形?在圖2中反映這一情況的點(diǎn)是 (并寫出此點(diǎn)的坐標(biāo));
(2)設(shè)四邊形PQCM的面積為ycm2,求y與t之間的函數(shù)關(guān)系式;
(3)連接PC,是否存在某一時(shí)刻t,使點(diǎn)M在線段PC的垂直平分線上?若存在,求出此時(shí)t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E、F分別為正方形ABCD的邊AB,BC的中點(diǎn),AF與DE交于點(diǎn)M,則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③MD=2AM=4EM;④AM=MF.其中正確結(jié)論的個(gè)數(shù)是( )
A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與直線相交于,兩點(diǎn),且拋物線經(jīng)過點(diǎn)
(1)求拋物線的解析式.
(2)點(diǎn)是拋物線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)點(diǎn)重合),過點(diǎn)作直線軸于點(diǎn),交直線于點(diǎn).當(dāng)時(shí),求點(diǎn)坐標(biāo);
(3)如圖所示,設(shè)拋物線與軸交于點(diǎn),在拋物線的第一象限內(nèi),是否存在一點(diǎn),使得四邊形的面積最大?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,AB=4,點(diǎn)D是邊AC上一點(diǎn),且AD=1,點(diǎn)E是AB邊上一點(diǎn),連接DE,以線段DE為直角邊作等腰直角△DEF(D、E、F三點(diǎn)依次呈逆時(shí)針方向),當(dāng)點(diǎn)F恰好落在BC邊上時(shí),則AE的長是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com