【題目】根據(jù)所給條件解直角三角形,結(jié)果不能確定的是( )

已知一直角邊及其對(duì)角 已知兩銳角 已知斜邊和一銳角 已知一直角邊和一斜邊

A. ①②④ B. ②③ C. ②④ D. 只有

【答案】D

【解析】試題解析:已知兩銳角,不能求出各邊的數(shù)值,所以解直角三角形,結(jié)果不能確定的是②.

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)幾何體的三個(gè)視圖是兩個(gè)同樣大小的長(zhǎng)方形和一個(gè)直徑等于長(zhǎng)方形一邊長(zhǎng)的圓,這個(gè)幾何體是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD內(nèi)接于O,M中點(diǎn),連接BM,CM

1)求證:BM=CM

2)當(dāng)O的半徑為2時(shí),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線(xiàn)(b,c為常數(shù))的頂點(diǎn)為P,等腰直角三角形ABC的頂點(diǎn)A的坐標(biāo)為(0,﹣1),C的坐標(biāo)為(4,3),直角頂點(diǎn)B在第四象限.

(1)如圖,若該拋物線(xiàn)過(guò)A,B兩點(diǎn),求該拋物線(xiàn)的函數(shù)表達(dá)式;

(2)平移(1)中的拋物線(xiàn),使頂點(diǎn)P在直線(xiàn)AC上滑動(dòng),且與AC交于另一點(diǎn)Q.

(i)若點(diǎn)M在直線(xiàn)AC下方,且為平移前(1)中的拋物線(xiàn)上的點(diǎn),當(dāng)以M、P、Q三點(diǎn)為頂點(diǎn)的三角形是等腰直角三角形時(shí),求出所有符合條件的點(diǎn)M的坐標(biāo);

(ii)取BC的中點(diǎn)N,連接NP,BQ.試探究是否存在最大值?若存在,求出該最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若樣本x1,x2,x3,xn的平均數(shù)為18,方差為2,則對(duì)于樣本x1+2,x2+2x3+2,xn+2,下列結(jié)論正確的是( 。

A.平均數(shù)為20,方差為2B.平均數(shù)為20,方差為4

C.平均數(shù)為18,方差為2D.平均數(shù)為18,方差為4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知正方形ABCD,直角三角形紙板的一個(gè)銳角頂點(diǎn)與點(diǎn)A重合,紙板繞點(diǎn)A旋轉(zhuǎn)時(shí),直角三角形紙板的一邊與直線(xiàn)CD交于E,分別過(guò)B、D作直線(xiàn)AE的垂線(xiàn),垂足分別為F、G.

(1)當(dāng)點(diǎn)E在DC延長(zhǎng)線(xiàn)時(shí),如圖①,求證:BF=DG﹣FG;

(2)將圖①中的三角板繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得圖②、圖③,此時(shí)BF、FG、DG之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出結(jié)論(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一串式子:﹣x,2x2,﹣3x3,4x4,…,﹣19x19,20x20,… ,寫(xiě)出第n個(gè)___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線(xiàn)l的表達(dá)式為y=x,點(diǎn)A1的坐標(biāo)為(1,0),以O(shè)為圓心,OA1為半徑畫(huà)弧,與直線(xiàn)l交于點(diǎn)C1,記長(zhǎng)為m1;過(guò)點(diǎn)A1作A1B1垂直x軸,交直線(xiàn)l于點(diǎn)B1,以O(shè)為圓心,OB1為半徑畫(huà)弧,交x軸于C2,記的長(zhǎng)為m2;過(guò)點(diǎn)B1作A2B1垂直l,交x軸于點(diǎn)A2,以O(shè)為圓心,OA2為半徑畫(huà)弧,交直線(xiàn)l于C3,記的長(zhǎng)為m3…按照這樣規(guī)律進(jìn)行下去,mn的長(zhǎng)為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)m=-3時(shí),代數(shù)式m2-2m+1的值是( )

A. -11 B. 1 C. 4 D. 16

查看答案和解析>>

同步練習(xí)冊(cè)答案