【題目】如圖,山坡上有一棵樹AB,樹底部B點(diǎn)到山腳C點(diǎn)的距離BC米,山坡的坡角為30°.小寧在山腳的平地F處測量這棵樹的高,點(diǎn)C到測角儀EF的水平距離CF=1米,從E處測得樹頂部A的仰角為45°,樹底部B的仰角為20°,求樹AB的高度.(參考數(shù)值:sin20°≈0.34cos20°≈0.94,tan20°≈0.36

【答案】6.4

【解析】

解:底部B點(diǎn)到山腳C點(diǎn)的距離BC6 3 米,山坡的坡角為30°

∴DC=BCcos30°=米,

∵CF=1米,

∴DC=9+1=10米,

∴GE=10米,

∵∠AEG=45°,

∴AG=EG=10米,

在直角三角形BGF中,

BG=GFtan20°=10×0.36=3.6米,

∴AB=AG-BG=10-3.6=6.4米,

答:樹高約為6.4

首先在直角三角形BDC中求得DC的長,然后求得DF的長,進(jìn)而求得GF的長,然后在直角三角形BGF中即可求得BG的長,從而求得樹高

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】宿豫區(qū)教育局在動員教師學(xué)習(xí)黨的十九大精神活動中,組織全區(qū)教師參加了黨的十九大知識競賽,賽后隨機(jī)抽取了某校部分教師的成績,按從低分到高分將成績分成AB,CD,E五組:x60,60≤x70,70≤x80,80≤x90,90≤x≤100(滿分100分).繪制成下面兩個不完整的統(tǒng)計圖:

根據(jù)上面提供的信息解答下列問題:

1D類所對應(yīng)的圓心角是  度,樣本中成績的中位數(shù)落在  類中;

2)補(bǔ)全條形統(tǒng)計圖;

3)若將D、E兩組成績定為優(yōu)秀,全區(qū)參加本次黨的十九大知識競賽共有2000名教師,估計全區(qū)參加競賽達(dá)到優(yōu)秀的教師共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若四邊形的一條對角線把四邊形分成兩個等腰三角形,則這條對角線叫做這個四邊形的巧分線,這個四邊形叫巧妙四邊形,若一個四邊形有兩條巧分線,則稱為絕妙四邊形.

1)下列四邊形一定是巧妙四邊形的是  .(填序號)

①平行四邊形;②矩形;③菱形;④正方形.

(初步應(yīng)用)

2)如圖,在絕妙四邊形ABCD中,ACAD,且AC垂直平分BD,若∠BAD80°,求∠BCD的度數(shù).

(深入研究)

3)在巧妙四邊形ABCD中,ABADCD,∠A90°AC是四邊形ABCD的巧分線,請直接寫出∠BCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】暑假到了,即將迎來手機(jī)市場的銷售旺季.某商場銷售甲、乙兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價和售價如下表所示:

進(jìn)價(元/部)

4000

2500

售價(元/部)

4300

3000

該商場計劃投入15.5萬元資金,全部用于購進(jìn)兩種手機(jī)若干部,期望全部銷售后可獲毛利潤不低于2萬元.(毛利潤=(售價﹣進(jìn)價)×銷售量)

1)若商場要想盡可能多的購進(jìn)甲種手機(jī),應(yīng)該安排怎樣的進(jìn)貨方案購進(jìn)甲乙兩種手機(jī)?

2)通過市場調(diào)研,該商場決定在甲種手機(jī)購進(jìn)最多的方案上,減少甲種手機(jī)的購進(jìn)數(shù)量,增加乙種手機(jī)的購進(jìn)數(shù)量.已知乙種手機(jī)增加的數(shù)量是甲種手機(jī)減少的數(shù)量的2倍,而且用于購進(jìn)這兩種手機(jī)的總資金不超過16萬元,該商場怎樣進(jìn)貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)黨的文化自信號召,某校開展了古詩詞誦讀大賽活動,現(xiàn)隨機(jī)抽取部分同學(xué)的成績進(jìn)行統(tǒng)計,并繪制成如下的兩個不完整的統(tǒng)計圖,請結(jié)合圖中提供的信息,解答下列各題:

(1)直接寫出a的值,a=   ,并把頻數(shù)分布直方圖補(bǔ)充完整.

(2)求扇形B的圓心角度數(shù).

(3)如果全校有2000名學(xué)生參加這次活動,90分以上(含90分)為優(yōu)秀,那么估計獲得優(yōu)秀獎的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA、PB是半徑為1的⊙O的兩條切線,點(diǎn)A、B分別為切點(diǎn),∠APB60°OP與弦AB交于點(diǎn)C,與⊙O交于點(diǎn)D.陰影部分的面積是_____(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,∠A=90°,AB=AC,點(diǎn)DE分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)MP,N分別為DE,DCBC的中點(diǎn).

(1)觀察猜想

1中,線段PMPN的數(shù)量關(guān)系是 ,位置關(guān)系是

(2)探究證明

ADE繞點(diǎn)A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷PMN的形狀,并說明理由;

(3)拓展延伸

ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,在矩形 ABCD 中,點(diǎn) E lcm/s 的速度從點(diǎn) A 向點(diǎn) D 運(yùn)動,運(yùn)動時間為 ts),連結(jié) BE,過點(diǎn) E EFBE,交 CD F,以 EF 為直徑作O

1)求證:∠1=∠2;

2)如圖 2,連結(jié) BF,交O 于點(diǎn) G,并連結(jié) EG.已知 AB4,AD6

用含 t 的代數(shù)式表示 DF 的長

連結(jié) DG,若△EGD 是以 EG 為腰的等腰三角形,求 t 的值;

3)連結(jié) OC,當(dāng) tanBFC3 時,恰有 OCEG,請直接寫出 tanABE 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課堂上,老師給出一道題:如圖,將拋物線Cyx26x+5x軸下方的圖象沿x軸翻折,翻折后得到的圖象與拋物線Cx軸上方的圖象記為G,已知直線lyx+m與圖象G有兩個公共點(diǎn),求m的取值范圍甲同學(xué)的結(jié)果是﹣5m<﹣1,乙同學(xué)的結(jié)果是m.下列說法正確的是(  )

A.甲的結(jié)果正確

B.乙的結(jié)果正確

C.甲、乙的結(jié)果合在一起才正確

D.甲、乙的結(jié)果合在一起也不正確

查看答案和解析>>

同步練習(xí)冊答案