【題目】如果一個(gè)多邊形的每一個(gè)外角都是36°,那么這個(gè)多邊形的邊數(shù)是(  )

A. 7B. 8C. 9D. 10

【答案】D

【解析】

根據(jù)多邊形的外角的性質(zhì),邊數(shù)等于360°除以每一個(gè)外角的度數(shù).

∵一個(gè)多邊形的每個(gè)外角都是36°,∴n=360°÷36°=10

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某市2013年企業(yè)用水量x(噸)與該月應(yīng)交的水費(fèi)y(元)之間的函數(shù)關(guān)系如圖所示.

(1)當(dāng)x50時(shí),求y關(guān)于x的函數(shù)關(guān)系式;

(2)若某企業(yè)2013年10月份的水費(fèi)為620元,求該企業(yè)2013年10月份的用水量;

(3)為貫徹省委“五水共治”發(fā)展戰(zhàn)略,鼓勵(lì)企業(yè)節(jié)約用水,該市自2014年1月開(kāi)始對(duì)月用水量超過(guò)80噸的企業(yè)加收污水處理費(fèi),規(guī)定:若企業(yè)月用水量x超過(guò)80噸,則除按2013年收費(fèi)標(biāo)準(zhǔn)收取水費(fèi)外,超過(guò)80噸部分每噸另加收元,若某企業(yè)2014年3月份的水費(fèi)和污水處理費(fèi)共600元,求這個(gè)企業(yè)該月的用水量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若平面上四條直線兩兩相交,且無(wú)三線共點(diǎn),則一共有___________對(duì)內(nèi)錯(cuò)角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ab,則下列各式正確的為( 。

A. |a|>|b| B. |a|<|b| C. |a|>b D. a>|b|

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等腰三角形的兩邊長(zhǎng)分別為36,則它的周長(zhǎng)等于( 。

A. 12B. 1215C. 15D. 1518

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,若∠B=C=2A,則∠A=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列立體圖形中面數(shù)相同的是(  )

①圓柱;②圓錐;③正方體;④四棱柱

A. ①④ B. ①② C. ②③ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在一次數(shù)學(xué)興趣小組活動(dòng)中,對(duì)一個(gè)數(shù)學(xué)問(wèn)題作如下探究:

問(wèn)題情境:如圖1,四邊形ABCD中,AD∥BC,點(diǎn)E為DC邊的中點(diǎn),連接AE并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)F,求證:S四邊形ABCD=S△ABF.(S表示面積)

問(wèn)題遷移:如圖2:在已知銳角∠AOB內(nèi)有一個(gè)定點(diǎn)P.過(guò)點(diǎn)P任意作一條直線MN,分別交射線OA、OB于點(diǎn)M、N.小明將直線MN繞著點(diǎn)P旋轉(zhuǎn)的過(guò)程中發(fā)現(xiàn),△MON的面積存在最小值,請(qǐng)問(wèn)當(dāng)直線MN在什么位置時(shí),△MON的面積最小,并說(shuō)明理由.

實(shí)際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部門(mén)計(jì)劃以公路OA、OB和經(jīng)過(guò)防疫站P的一條直線MN為隔離線,建立一個(gè)面積最小的三角形隔離區(qū)△MON.若測(cè)得∠AOB=66°,∠POB=30°,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66°≈0.91,tan66°≈2.25,≈1.73)

拓展延伸:如圖4,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A、B、C、P的坐標(biāo)分別為(6,0)(6,3)(,)、(4、2),過(guò)點(diǎn)p的直線l與四邊形OABC一組對(duì)邊相交,將四邊形OABC分成兩個(gè)四邊形,求其中以點(diǎn)O為頂點(diǎn)的四邊形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=ax2+bx+c的頂點(diǎn)為D(﹣1,3),與x軸的一個(gè)交點(diǎn)在(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:

①b2+4ac>0;②c﹣a=3;③a+b+c<0;④方程ax2+bx+c=m(m≥2)一定有實(shí)數(shù)根,其中正確的結(jié)論為(

A.②③ B.①③ C.①②③ D.①②④

查看答案和解析>>

同步練習(xí)冊(cè)答案