△ABC是等邊三角形,M是AC上一點,N是BC上的一點,且AM=BN,∠MBC=25°,AN與BM交于點O,則∠MON=


  1. A.
    130°
  2. B.
    120°
  3. C.
    110°
  4. D.
    85°
C
分析:根據(jù)等邊三角形的性質可得∠A=∠B=60°,又因為AM=BN,AB=AB,所以△AMB≌△BNA,從而得到∠NAB=∠MBA=60°-∠MBC=35°,則∠MON=∠AOB=180°-2×35°=110°.
解答:解:∵△ABC是等邊三角形
∴∠A=∠B=60°
∵AM=BN,AB=AB
∴△AMB≌△BNA
∴∠NAB=∠MBA=60°-∠MBC=35°
∴∠AOB=180°-2×35°=110°
∵∠MON=∠AOB
∴∠MON=110°
故選C.
點評:根據(jù)等邊三角形的性質,結合全等三角形求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知a、b、c是△ABC的三條邊長,若x=-1為關于x的一元二次方程(c-b)x2-2(b-a)x+(a-b)=0的根.
(1)△ABC是等腰三角形嗎?△ABC是等邊三角形嗎?請寫出你的結論并證明;
(2)若代數(shù)式子
a-2
+
2-a
有意義,且b為方程y2-8y+15=0的根,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,△ABC是等邊三角形,D、E分別是BC、CA上的點,且BD=CE.
(1)求證:AD=BE;(2)求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,
(1)用直尺和圓規(guī)作邊BC的高線AD交BC于點D(保留作圖痕跡,不要求寫作法);
(2)若△ABC的邊長為2,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2009•裕華區(qū)二模)已知,如圖△ABC是等邊三角形,將一塊含30°角的直角三角板DEF如圖放置,讓△ABC在BC所在的直線l上向左平移.當點B與點E重合時,點A恰好落在三角板的斜邊DF上的M點,點C在N點位置上(假定AB、AC與三角板斜邊的交點為G、H)
問:(1)在△ABC平移過程中,通過測量CH、CF的長度,猜想CH、CF滿足的數(shù)量關系;
(2)在△ABC平移過程中,通過測量BE、AH的長度,猜想BE.AH滿足的數(shù)量關系;
(3)證明(2)中你的猜想.(證明不得含有圖中未標示的字母)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在△ABC中,AB=AC,若要使△ABC是等邊三角形,那么需添加一個條件:
AB=BC
AB=BC
∠A=60°
∠A=60°
(從不同角度填空).

查看答案和解析>>

同步練習冊答案