已知AP是半圓O的直徑,點C是半圓O上的一個動點(不與點A、P重合),聯(lián)結AC,以直線AC為對稱軸翻折AO,將點O的對稱點記為O1,射線AO1交半圓O于點B,聯(lián)結OC.

(1)如圖1,求證:AB∥OC;
(2)如圖2,當點B與點O1重合時,求證:
(3)過點C作射線AO1的垂線,垂足為E,聯(lián)結OE交AC于F.當AO=5,O1B=1時,求的值.
【答案】分析:(1)利用對稱性得出∠OAC=∠O1AC,再利用等邊對等角得出∠OAC=∠C,即可得出∠C=∠O1AC,求出AB∥OC即可;
(2)由點O1與點O關于直線AC對稱,AC⊥OO1,由點O1與點B重合,可得AC⊥OB,再利用垂徑定理推論得出AB=CB;
(3)分別根據(jù)當點O1在線段AB上以及當點O1在線段AB的延長線上時分別求出AE的長即可得出答案.
解答:解:(1)∵點O1與點O關于直線AC對稱,
∴∠OAC=∠O1AC.
在⊙O中,
∵OA=OC,
∴∠OAC=∠C.
∴∠C=∠O1AC,
∴O1A∥OC,
即AB∥OC;

(2)方法一:如圖2,連結OB.
∵點O1與點O關于直線AC對稱,AC⊥OO1,
由點O1與點B重合,可得AC⊥OB.
∵點O是圓心,AC⊥OB,
∴AB=CB,

方法2:∵點O1與點O關于直線AC對稱,
∴AO=AO1,CO=CO1
由點O1與點B重合,可得 AO=AB,CB=CO,
∵OA=OC,
∴AB=CB.
∴AB=CB,

(3)當點O1在線段AB上(如圖3),過點O作OH⊥AB,垂足為H.
∵OH⊥AB,CE⊥AB,
∴OH∥CE,
又∵AB∥OC,
∴HE=OC=5.
∵AB=AO1+O1B=AO+O1B=6,
又∵OH⊥AB,
∴AH=AB=3.
∴AE=EH+AH=5+3=8,
∵AB∥OC,
==,
當點O1在線段AB的延長線上,如圖4,
過點O作OH⊥AB,垂足為H.
∵OH⊥AB,CE⊥AB,
∴OH∥CE,
又∵AB∥OC,
∴HE=OC=5.
∵AB=AO1-O1B=AO-O1B=4,
又∵OH⊥AB,
∴AH=AB=2.
∴AE=EH+AH=5+2=7,
∵AB∥OC,
==
點評:此題主要考查了圓的綜合應用以及垂徑定理和關于直線對稱的性質等知識,利用數(shù)形結合以及分類討論的思想得出是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知AB是半圓O的直徑,AP為過點A的半圓的切線.在
AB
上任取一點C(點C與A、B不重合),過點C作半圓的切線CD交AP于點D;過點C作CE⊥AB,垂足為E.連接BD,交CE于點F.
(1)當點C為
AB
的中點時(如圖1),求證:CF=EF;
(2)當點C不是
AB
的中點時(如圖2),試判斷CF與EF的精英家教網(wǎng)相等關系是否保持不變,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知AB是半圓O的直徑,AP為過點A的半圓的切線,在
AB
上任取一點C(點C與A,B不重合),過精英家教網(wǎng)點C作CD⊥AB于D,E是CD的中點,連接BE并延長交AP于點F,連接CF.
(1)當點C是
AB
的中點時(如圖1),求證:直線CF是半圓O的切線;
(2)當點C不是
AB
的中點時(如圖2),試猜想直線CF與半圓O的位置關系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•嘉定區(qū)二模)已知AP是半圓O的直徑,點C是半圓O上的一個動點(不與點A、P重合),聯(lián)結AC,以直線AC為對稱軸翻折AO,將點O的對稱點記為O1,射線AO1交半圓O于點B,聯(lián)結OC.

(1)如圖1,求證:AB∥OC;
(2)如圖2,當點B與點O1重合時,求證:
AB
=
CB
;
(3)過點C作射線AO1的垂線,垂足為E,聯(lián)結OE交AC于F.當AO=5,O1B=1時,求
CF
AF
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•葫蘆島一模)如圖,已知AB是半圓O的直徑,AB=10,點P是半圓周上一點,連接AP、BP,并延長BP至點C,使CP=BP,過點C作CE⊥AB,點E為垂足,CE交AP于點F,連接OF.
(1)當∠BAP=30°時,求
BP
的長度;
(2)當CE=8時,求線段EF的長;
(3)在點P運動過程中,點E隨之運動到點A、O之間時,以點E、O、F為頂點的三角形與△BAP相似,請求出此時AE的長度.

查看答案和解析>>

同步練習冊答案