如圖,矩形ABCD中,點(diǎn)E、F分別在AB、BC上,△DEF為等腰直角三角形,∠DEF=90°,AD+CD=10,AE=2,求AD的長(zhǎng).

【答案】分析:先設(shè)AD=x.由△DEF為等腰直角三角形,可以得到一對(duì)邊相等,一對(duì)角相等,再加上一對(duì)直角相等,那么△ADE和△BEF全等,就有AD=BE.那么利用邊相等可得x+x+2=10,解之即得AD.
解答:解:先設(shè)AD=x.
∵△DEF為等腰三角形.
∴DE=EF,∠FEB+∠DEA=90°.
又∵∠AED+∠ADE=90°.
∴∠FEB=∠EDA.
又∵四邊形ABCD是矩形,
∴∠B=∠A=90°
∴△ADE≌△BEF(AAS).
∴AD=BE.
∴AD+CD=AD+AB=x+x+2=10.
解得x=4.
即AD=4.
點(diǎn)評(píng):本題綜合考查了等腰直角三角形的性質(zhì),同角的余角相等,全等三角形的判定和性質(zhì)及矩形的性質(zhì)等知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AB=6,BC=8,M是BC的中點(diǎn),DE⊥AM,E是垂足,則△ABM的面積為
 
;△ADE的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AD=a,AB=b,要使BC邊上至少存在一點(diǎn)P,使△ABP、△APD、△CDP兩兩相似,則a、b間的關(guān)系式一定滿足( 。
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,矩形ABCD中,AE⊥BD,垂足為E,∠DAE=2∠BAE,則∠CAE=
30
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2008•懷柔區(qū)二模)已知如圖,矩形ABCD中,AB=3cm,BC=4cm,E是邊AD上一點(diǎn),且BE=ED,P是對(duì)角線上任意一點(diǎn),PF⊥BE,PG⊥AD,垂足分別為F、G.則PF+PG的長(zhǎng)為
3
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2002•西藏)已知:如圖,矩形ABCD中,E、F是AB邊上兩點(diǎn),且AF=BE,連結(jié)DE、CF得到梯形EFCD.
求證:梯形EFCD是等腰梯形.

查看答案和解析>>

同步練習(xí)冊(cè)答案