(2002•蘇州)如圖,四邊形ABCD內(nèi)接于⊙O,若∠BOD=160°,則∠BCD=( )

A.160°
B.100°
C.80°
D.20°
【答案】分析:根據(jù)同弧所對的圓周角與圓心角的關(guān)系,易求得圓周角∠BAD的度數(shù);由于圓內(nèi)接四邊形的內(nèi)對角互補,則∠BAD+∠BCD=180°,由此得解.
解答:解:∵四邊形ABCD內(nèi)接于⊙O,
∴∠BAD+∠BCD=180°;
又∵∠BAD=∠BOD=80°,
∴∠BCD=180°-∠BAD=100°;
故選B.
點評:此題主要考查了圓內(nèi)接四邊形的性質(zhì)及圓周角定理的綜合應(yīng)用能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2002•蘇州)如圖,梯形OABC中,O為直角坐標(biāo)系的原點,A、B、C的坐標(biāo)分別為(14,0)、(14,3)、(4,3).點P、Q同時從原點出發(fā),分別作勻速運動,其中點P沿OA向終點A運動,速度為每秒1個單位;點Q沿OC、CB向終點B運動,當(dāng)這兩點中有一點到達(dá)自己的終點時,另一點也停止運動.設(shè)P從出發(fā)起運動了t秒.
(1)如果點Q的速度為每秒2個單位,
①試分別寫出這時點Q在OC上或在CB上時的坐標(biāo)(用含t的代數(shù)式表示,不要求寫出t的取值范圍);
②求t為何值時,PQ∥OC?
(2)如果點P與點Q所經(jīng)過的路程之和恰好為梯形OABC的周長的一半,
①試用含t的代數(shù)式表示這時點Q所經(jīng)過的路程和它的速度;
②試問:這時直線PQ是否可能同時把梯形OABC的面積也分成相等的兩部分?如有可能,求出相應(yīng)的t的值和P、Q的坐標(biāo);如不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年江蘇省蘇州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•蘇州)如圖,梯形OABC中,O為直角坐標(biāo)系的原點,A、B、C的坐標(biāo)分別為(14,0)、(14,3)、(4,3).點P、Q同時從原點出發(fā),分別作勻速運動,其中點P沿OA向終點A運動,速度為每秒1個單位;點Q沿OC、CB向終點B運動,當(dāng)這兩點中有一點到達(dá)自己的終點時,另一點也停止運動.設(shè)P從出發(fā)起運動了t秒.
(1)如果點Q的速度為每秒2個單位,
①試分別寫出這時點Q在OC上或在CB上時的坐標(biāo)(用含t的代數(shù)式表示,不要求寫出t的取值范圍);
②求t為何值時,PQ∥OC?
(2)如果點P與點Q所經(jīng)過的路程之和恰好為梯形OABC的周長的一半,
①試用含t的代數(shù)式表示這時點Q所經(jīng)過的路程和它的速度;
②試問:這時直線PQ是否可能同時把梯形OABC的面積也分成相等的兩部分?如有可能,求出相應(yīng)的t的值和P、Q的坐標(biāo);如不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年江蘇省蘇州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2002•蘇州)如圖,⊙O的內(nèi)接△ABC的外角∠ACE的平分線交⊙O于點D.DF⊥AC,垂足為F,DE⊥BC,垂足為E.給出下列4個結(jié)論:①CE=CF;②∠ACB=∠EDF;③DE是⊙O的切線;④.其中一定成立的是( )

A.①②③
B.②③④
C.①③④
D.①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年江蘇省蘇州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2002•蘇州)如圖,△ABC中,∠C=90°,BC=2,AB=3,則下列結(jié)論中正確的是( )

A.sinA=
B.cosA=
C.sinA=
D.tanA=

查看答案和解析>>

同步練習(xí)冊答案